Posts

Philosophy of Science – What & Why?

Interview with John Wilkins:

John-Wilkins---Phil-Sci-IntroEvery so often, somebody will attack the worth, role or relevance of philosophy on the internets, as I have discussed before. Occasionally it will be a scientist, who usually conflates philosophy with theology. This is as bad as someone assuming that because I do some philosophy I must have the Meaning of Life (the answer is, variously, 12 year old Scotch, good chocolate, or dental hygiene).

But it raises an interesting question or two: what is the reason to do philosophy in relation to science? being the most obvious (and thus set up the context in which you can answer questions like: are there other ways to find truth than science?). So I thought I would briefly give my reasons for that.

When philosophy began around 500BCE, there was no distinction between science and philosophy, nor, for that matter, between religion and philosophy. Arguably, science began when the pre-Socratics started to ask what the natures of things were that made them behave as they did, and equally arguably the first actual empirical scientist was Aristotle (and, I suspect, his graduate students).

But a distinction between science and philosophy began with the separation between natural philosophy (roughly what we now call science) and moral philosophy, which dealt with things to do with human life and included what we should believe about the world, including moral, theological and metaphysical beliefs. The natural kind was involved in considering the natures or things. A lot gets packed into that simple word, nature: it literally means “in-born” (natus) and the Greek physikos means much the same. Of course, something can be in-born only if it is born that way (yes, folks, she’s playing on some old tropes here!), and most physical things aren’t born at all, but the idea was passed from living to nonliving things, and so natural philosophy was born. That way.

In the period after Francis Bacon, natural philosophy was something that depended crucially on observation, and so the Empiricists arose: Locke, Berkeley, Hobbes, and later Hume. That these names are famous in philosophy suggests something: philosophy does best when it is trying to elucidate science itself. And when William Whewell in 1833 coined the term scientist to denote those who sought scientia or knowledge, science had begun its separation from the rest of philosophy.

Or imperfectly, anyway. For a start the very best scientists of the day, including Babbage, Buckland and Whewell himself wrote philosophical tomes alongside theologians and philosophers. And the tradition continues until now, such as the recent book by Stephen Hawking in which he declares the philosophical enterprise is dead, a decidedly philosophical claim to make. Many scientists seem to find the doing of philosophy inevitable.

So why do I do philosophy of science? Simply because it is where the epistemic action is: science is where we do get knowledge, and I wish to understand how and why, and the limitations. All else flows from this for me. Others I know (and respect) do straight metaphysics and philosophy of language, but I do not. It only has a bite if it gives some clarity to science. I think this is also true of metaphysics, ethics and such matters as philosophy of religion.

Now there are those who think that science effectively exhausts our knowledge-gathering. This, too, is a philosophical position, which has to be defended, and elaborated (thus causing more philosophy to be done). I don’t object to that view, but for me, it is better to be positive (say that science gives us knowledge even if other activities may do) than to be negative (deny that anything but science gives us knowledge). It may be that we get to the latter position after considering the former; if so, that would be a philosophical result.

I am fascinated by science. It allows us to do things no ancient Greek (or West Semitic) thinker would have been even able to conceive of. It means we make fewer mistakes. Philosophy is, and ought only to be, in the service of knowledge (I’m sure somebody has said that before). Science is a good first approximation of that.

But scientists who reject philosophy, as if that very rejection is not a philosophical stance (probably taken unreflectively or on the basis of half-digested emotive appeals), them I have no time for as philosophers. They should perhaps stick to their last and not make fools of themselves.

Not, of course, that every philosopher is worth reading. Sturgeon’s Law (90% of everything is crap) applies here too. But lest any scientist get too smug, recall that 99% of all scientific papers are never cited again many scientific papers are uncited . In philosophy, that ratio is perhaps lower… probably almost down to the Sturgeon limit.

See this post by John Wilkins at Evolving Thoughts: http://evolvingthoughts.net/2011/07/why-do-philosophy-of-science.

Life, Knowledge and Natural Selection – How Life (Scientifically) Designs its Future – Bill Hall

Bill HallStudies of the nature of life, evolutionary epistemology, anthropology and history of technology leads me reluctantly to the conclusion that Moore’s Law is taking us towards some kind of post-human singularity. The presentation explores fundamental aspects of life and knowledge, based on a fusion of Karl Popper’s (1972) evolutionary epistemology and Maturana and Varela’s (1980) autopoietic theory of life to show that knowledge and life must co-evolve, and that this co-evolution leads to exponential growth of knowledge and capabilities to control a planet (and the Universe???). The initial pace, based on changes to genetic heredity, is geologically slow. The addition of the capacity of living cognition for cultural heredity, changes the pace of significant change from millions of years, to millennia. Externalization of cultural knowledge to writing and printing increases the pace to centuries and decades. Networking virtual cultural knowledge at light speed via the internet, increases the pace to years or even months. In my lifetime I have seen the first generation digital computers evolve into the Global Brain.

As long as the requisites for live are available, competition for limiting resources inevitably leads to increasing complexity. Through most of the history of life, a species/individuals’ knowledge was embodied in its dynamic structure (e.g., of the nervous system) and genetic heritage that controls the development and regulation of structure. Some vertebrates evolved sufficient neural complexity to support the development of culture and cultural heredity. A few lineages, such as corvids (crows and their relatives), and two largely arboreal primate lineages (African apes and South American capuchin monkeys) independently evolved cultures able to transmit the knowledge to make and use increasingly complex tools from one generation to the next. Hominins, a lineage of tool-using apes forced by climate change around 4-5 million years ago to learn how to survive by extractive foraging and hunting on grassy savannas developed increasingly complex and sophisticated tool-kits for hunting and gathering, such that by around 2.5 million years ago our ancestors replaced most species of what was originally a substantial ecological guild of large carnivores.

Tools extend the physical and cognitive capabilities of the tool-users. In an ecological sense, hominin groups are defined by their shared survival knowledge, and inevitably compete to control limiting resources. Competition among groups led to the slow development of increasingly better stone and organic tools, and a genetically-based cognitive capacity to make and use tools. Homo heidelbergensis, that split into African (H. sapiens), European (Neanderthals), and Asian (Denisovans) some 200,000 years ago evolved complex linguistic capabilities that greatly increased the bandwidth for transmitting cultural knowledge. Some 70,000 years ago H. sapiens (“humans”) exited Africa to spread throughout Eurasia and quickly replace all other surviving hominin lineages. By ~ 50,000 years ago humans were making complex tools like bows and arrows, which put a premium on the capacity to remember the rapidly increasing volume of survival knowledge. At some point before the end of the last Ice Age, mnemonic tools were developed (“method of loci”, “songlines”) to extend the capacity of living memory by at least one order of magnitude and some 10,000 years ago as agriculture became practical in the “Fertile Crescent” monumental theaters of the mind (such as Göbekli Tepe and Stonehenge) and specialized knowledge management guilds such as the Masons provided the cultural capacity to enable the Agricultural Revolution. 7-4,000 years ago technologies for writing and the use of books and libraries enabled storing and sharing of cultural knowledge in material form external, facilitating the emergence of empires and nation-states.
Around 550 years ago printing enabled the mass production of books and widespread dissemination of bodies of knowledge to fuel the Reformation, Scientific and Industrial revolutions. Around 60 years ago the invention of the digital computer increasingly externalized cognitive processes and controls over other kinds of tools. Databases, word processing and the internet developed over the last ~30 years enabled knowledge to be created in the virtual world and then shared globally at light speed. Personal technologies developed in the last 10 years (e.g., smartphones) are allowing the emergence of post-human cyborgs. Moore’s Law of exponential growth suggests the capacity for a few orders of magnitude more before we reach the outer limits of quantum computing.

What happens next is anyone’s guess.

Slides available here:

 

 

The Shaky Foundations of Science: An Overview of the Big Issues – James Fodor

James Fodor 2013Many people think about science in a fairly simplistic way: collect evidence, formulate a theory, test the theory. By this method, it is claimed, science can achieve objective, rational knowledge about the workings of reality. In this presentation I will question the validity of this understanding of science. I will consider some of the key controversies in philosophy of science, including the problem of induction, the theory-ladenness of observation, the nature of scientific explanation, theory choice, and scientific realism, giving an overview of some of the main questions and arguments from major thinkers like Popper, Quine, Kuhn, Hempel, and Feyerabend. I will argue that philosophy of science paints a much richer and messier picture of the relationship between science and truth than many people commonly imagine, and that a familiarity with the key issues in the philosophy of science is vital for a proper understanding of the power and limits of scientific thinking.

Slides to the presentation available here: