Posts

The Singularity & Prediction – Can there be an Intelligence Explosion? – Interview with Marcus Hutter

Can there be an Intelligence Explosion?  Can Intelligence Explode?
The technological singularity refers to a hypothetical scenario in which technological advances virtually explode. The most popular scenario is the creation of super-intelligent algorithms that recursively create ever higher intelligences. What could it mean for intelligence to explode?
We need to provide more careful treatment of what intelligence actually is, separate speed from intelligence explosion, compare what super-intelligent participants and classical human observers might experience and do, discuss immediate implications for the diversity and value of life, consider possible bounds on intelligence, and contemplate intelligences right at the singularity.

Let an ultraintelligent machine be defined as a machine that can far surpass all the intellectual activities of any man however clever. Since the design of machines is one of these intellectual activities, an ultraintelligent machine could design even better machines; there would then unquestionably be an ‘intelligence explosion,’ and the intelligence of man would be left far behind. Thus the first ultraintelligent machine is the last invention that man need ever make. Irving John Good - 'Good Thinking: The Foundations of Probability and Its Applications'

team-marcus-hutterPaper: M.Hutter, Can Intelligence Explode, Journal of Consciousness Studies, Vol.19, Nr 1-2 (2012) pages 143–166.
http://www.hutter1.net/publ/singularity.pdf
http://arxiv.org/abs/1202.6177

See also:
http://2012.singularitysummit.com.au/2012/08/can-intelligence-explode/
http://2012.singularitysummit.com.au/2012/08/universal-artificial-intelligence/

Can Intelligence Explode? – Marcus Hutter at Singularity Summit Australia 2012

Abstract: The technological singularity refers to a hypothetical scenario in which technological advances virtually explode. The most popular scenario is the creation of super-intelligent algorithms that recursively create ever higher intelligences. After a short introduction to this intriguing potential future, I will elaborate on what it could mean for intelligence to explode. In this course, I will (have to) provide a more careful treatment of what intelligence actually is, separate speed from intelligence explosion, compare what super-intelligent participants and classical human observers might experience and do, discuss immediate implications for the diversity and value of life, consider possible bounds on intelligence, and contemplate intelligences right at the singularity.

 


 

Slides (pdf): http://www.hutter1.net/publ/ssingularity.pdf
Slides (PowerPoint): http://www.hutter1.net/publ/ssingularity.ppsx
Paper: M.Hutter, Can Intelligence Explode, Journal of Consciousness Studies, Vol.19, Nr 1-2 (2012) pages 143–166.
http://www.hutter1.net/publ/singularity.pdf

Also see:
http://2012.singularitysummit.com.au/2012/08/can-intelligence-explode/
http://2012.singularitysummit.com.au/2012/08/universal-artificial-intelligence/
http://2012.singularitysummit.com.au/2012/08/panel-intelligence-substrates-computation-and-the-future/
http://2012.singularitysummit.com.au/2012/01/marcus-hutter-to-speak-at-the-singularity-summit-au-2012/
http://2012.singularitysummit.com.au/agenda

Marcus Hutter (born 1967) is a German computer scientist and professor at the Australian National University. Hutter was born and educated in Munich, where he studied physics and computer science at the Technical University of Munich. In 2000 he joined Jürgen Schmidhuber’s group at the Swiss Artificial Intelligence lab IDSIA, where he developed the first mathematical theory of optimal Universal Artificial Intelligence, based on Kolmogorov complexity and Ray Solomonoff’s theory of universal inductive inference. In 2006 he also accepted a professorship at the Australian National University in Canberra.

Hutter’s notion of universal AI describes the optimal strategy of an agent that wants to maximize its future expected reward in some unknown dynamic environment, up to some fixed future horizon. This is the general reinforcement learning problem. Solomonoff/Hutter’s only assumption is that the reactions of the environment in response to the agent’s actions follow some unknown but computable probability distribution.

team-marcus-hutter

Professor Marcus Hutter

Research interests:

Artificial intelligence, Bayesian statistics, theoretical computer science, machine learning, sequential decision theory, universal forecasting, algorithmic information theory, adaptive control, MDL, image processing, particle physics, philosophy of science.

Bio:

Marcus Hutter is Professor in the RSCS at the Australian National University in Canberra, Australia. He received his PhD and BSc in physics from the LMU in Munich and a Habilitation, MSc, and BSc in informatics from the TU Munich. Since 2000, his research at IDSIA and now ANU is centered around the information-theoretic foundations of inductive reasoning and reinforcement learning, which has resulted in 100+ publications and several awards. His book “Universal Artificial Intelligence” (Springer, EATCS, 2005) develops the first sound and complete theory of AI. He also runs the Human Knowledge Compression Contest (50’000€ H-prize).