High Impact Technologies with Andrew Barron

Well that’s an open-ended question: What technologies will have high impact in the future?
I think what we are seeing at the moment – and we are seeing it quite rapidly – is the fusion of the biological sciences and the information sciences period – so it goes beyond AI.
We’re seeing a capacity to manipulate and rewrite genomes – again we are actually need an involvement of an AI to do that properly – but we really are truly seeing a fusion of the biological and information sciences which is opening absolutely transformative technologies – that we probably can’t quite properly predict or name currently – but I imagine that the future would see explosive growth in this area and the emergence disciplines that we can’t even imagine currently.

Andrew Barron - High Impact Technology.New Capacities to manipulate genomes
Yep.. exactly… exactly – so new capacities to manipulate genomes – and equally we are getting much smarter about the risks of that and much more careful with that – but we are realizing also that the genome itself is highly self-organized and massively data-heavy – and yet this fusion of biology and information sciences is liberating entirely new disciplines – and it’s happening at such a pace.  I mean, just in terms of my life as a scientist – we’ve gone from – when I was at school we were told that the human genome was impossible – informatically impossible – there would never be enough computing power in the world to sequence the human genome.  Now we’re sequencing genomes for just over $1000 very very quickly and easily – our challenge now is to be intelligent in what to do with that data.

Andrew Barron - High Impact Technology- Significant Strides in Technology
What’s interesting about the iPhone is not the technology itself – it’s the way that it has changed human behavior.  So we’ve suddenly adapted very very very rapidly to a carryable device that enables us to have immediate communication / immediate access to databases and reference libraries – and their capacity to store endless amounts of images if we choose to do so – and we’ve adapted to that seamlessly – to a point when people feel lost and panic if their phone is broken or is taken away from them.  That’s the more interesting interesting impact of the iPhone – and I think what that says is that we’re going to see humans adapt very quickly easily to other forms of wearable or insert-able technologies – I think we’ve shown by the iPhone example that we have a capacity embrace that kind of change – if it offers convenience and ease and improves our connectivity and quality of life.
In terms of technology though I think that the biggest strides will come from biological – there is research that fuses biology and technology – I think that we are on the cusp of that – the more interesting technological changes will come not through simple technology – but by an understanding of how our brains work – by understanding the human brain.  If we can actually crack that and then interface that with technology – that will get completely transformative technological solutions.
So in the far future could we see humans being a mixture of technology and organic solutions – and would be basically see a re-imagining of humanity – in a far future?  Again I see no reason why not in a far future.

Andrew Barron - AI.00_03_16_08.Still001

Andrew Barron is an Associate Professor in the Department of Biological Sciences at Macquarie University. With his team at Macquarie they are exploring the neurobiology of major behavioural systems such as memory, goal-directed behaviour and stress from a comparative and evolutionary perspective. In 2015 Andrew was awarded an ARC Future Fellowship to develop a computational model of the honey bee brain.

Andrew’s PhD (Department of Zoology, University of Cambridge 1999) considered the possibility of the retention of memory through metamorphosis in Drosophila. Prior to his move to Macquarie in 2007 Andrew had the opportunity to work with and be mentored by Prof. Ben Oldroyd (University of Sydney), Prof. Gene Robinson (University of Illinois), Prof. Mandayam Srinivasan and Prof. Ryszard Maleszka (Australian National University).

Andrew Barron - High Impact Technology. - title

Honey Bee Stress Leading to Colony Collapse Disorder

Barron mugshot 2013Honey bees – with a tiny brain the size of a sesame seed – can solve amazingly difficult problems (esp navigational challenges). Here is some research that suggests when young bees are stressed and sent out to labor too early – bee colonies collapse.

With their greater understanding of the collapse process, the authors are now exploring possible strategies to improve colony resilience including rescue packages for sick colonies, and new sensors to detect colonies at risk of failure.

– See MQU Article ‘Why stressed young bees’ early start to foraging can lead to colony collapse

Honey bee colony death rates are unsustainably high. While many stressors have been identified that contribute to this problem, we do not know why colonies transition so rapidly from a state of apparent health to failure. It is well known that individual bees react to nutritional and pathogen stresses by foraging precociously: our study explains how colony failure arises from the social responses of individual bees to stress. We used radio tracking to monitor performance of bees and found that workers who begin foraging prematurely perform very poorly. This compounds the stresses on the colony and accelerates failure. We suggest how colonies at risk can be identified early, and the most effective interventions to prevent failure.

– Research paper by Clint J. Perry, Eirik Søvik, Mary R. Myerscough, and Andrew B. Barron (Proceedings of the National Academy of Sciences): ‘Rapid behavioral maturation accelerates failure of stressed honey bee colonies


Colony Collapes Disorder
Colony collapse disorder causes significant economic losses because many agricultural crops (although no staple foods) worldwide are pollinated by western honey bees. According to the Agriculture and Consumer Protection Department of the Food and Agriculture Organization of the United Nations, the worth of global crops with honeybee’s pollination was estimated to be close to $200 billion in 2005. Shortages of bees in the US have increased the cost to farmers renting them for pollination services by up to 20%. (ref Wikipedia)

Arguably the insect suffering involved here is in and of it self bad enough – though people listen when they hear about Colony Collapse Disorder – or how the loss of bee colonies effects peoples food supply lines (leading to more suffering). I’d be interested to know what Brian Tomasik and David Pearce thinks about this.