Science vs Pseudoscience – Kevin Korb

Science vs PseuodoscienceScience has a certain common core, especially a reliance on empirical methods of assessing hypotheses. Pseudosciences have little in common but their negation: they are not science.
They reject meaningful empirical assessment in some way or another. Popper proposed a clear demarcation criterion for Science v Rubbish: Falsifiability. However, his criterion has not stood the test of time. There are no definitive arguments against any pseudoscience, any more than against extreme skepticism in general, but there are clear indicators of phoniness.

Demarcation

Science v Non-science – What’s the point? Possible goals for distinguishing btw them: Rhetorical, Political, Social Methodological: aiming at identifying methodolgical virtues and vices; improving practice How to proceed? Traditional: propose and test necessary and sufficient conditions for being science Less ambitious: collect prominent characteristics that support a “family resemblance”

What is Science?

Science is something like the organized (social, intersubjective) attempt to acquire knowledge about the world through interacting with the world. In the Western tradition, this began with the pre-Socratic philosophers and is especially associated with Aristotle.

science-pseudoscienceNature of Science Science contrasts to: Learning: individuals learn about the world. Their brains are wired for that. Mathematics/deduction: a handmaid to science, but powerless to teach us about the world on its own. Dogma, ideology, faith: These may be crucial to driving even scientific projects forward (as are good meals, sleep, etc.), but as they are by definition not tested by evidence, they are not themselves science.

A Potted History of the Philosophy of Science

Wissenschaftsphilosophie – The Vienna Circle Early 20th Century Scientific Major Success Stories: Charles Darwin (evolutionary biology) Gottlob Frege (formal logic) Albert Einstein (physics) The sciences were showing themselves as the most successful human project ever undertaken. In Vienna a group of great philosophers asked themselves: Why? How did this happen? With the Vienna Circle philosophy of science became a discipline, attempting to answer these questions.

The Vienna Circle & Logical Positivism : The beginning was the appointment of Ernst Mach as Professor of the Philosophy of the Inductive Sciences at the University of Vienna, 1895. Thereafter, Mortiz Schlick founded the Vienna Circle (and Logical Positivism) in 1922. Through the helpful activities of Adolf Hitler, the leading philosophers of science introduced the Vienna Circles ideas throughout the English speaking world.
Vienna Circle Ernst Mach Moritz Schlick Rudolf Carnap Hans Reichenbach Karl Popper Paul Feyerabend Noretta Koertge Positivismus Falsifikationismus Anarchismus
The Vienna Circle Basic Principles: Philosophy as logical analysis The logical foundation of science lies in observation & experiment e.g., Rudolf Carnap’s 1928 title: The Logical Construction of the World!! Key: Verifiability Criterion of Meaning What cannot be proven empirically, is meaningless. E.g., metaphysics, religion, superstition. {h, b e1, . . . en; e1, . . . en} verifies h
Karl Popper Objects Many scientific hypotheses are universal: E.g., light always bends near large masses. But {h, b e1, . . . e∞; e1, . . . e∞} is not even a possible state of affairs Aside from that, metaphysics is an ineliminable part of science; all science has fundamental presuppositions.
Karl Popper Falsificationism Key: Demarcation criterion for science What cannot be falsified empirically, is unscientific. E.g., Marxism, religion, psychoanalysis. {h, b e, ¬e} falsifies h Theses: We can make scientific (or social) progress alternating between Bold Conjectures and Refutations. The ideal test (severe test) is guaranteed to falsify one of two (or more) alternative conjectures. Progress: refuting more and more theories; not accumulating more and more knowledge.
Imre Lakatos Sophisticated Falsificationism {h, b e, ¬e} falsifies (h&b) Hypotheses stand or fall in networks, networked to each other and to theories of measurement, etc. = research programmes If a research programme makes novel predictions that come up true, it is progressive If a programme lies in a sea of anomalies and is dominated by ad hoc saving maneuvers, it is degenerating Unfortunately, there’s no definite point at which a degenerating research programme rationally needs to be abandoned.
Thomas Kuhn Scientific Revolutions In The Structure of Scientific Revolutions (1962) he introduced the idea that science moves (not: progresses) from “normal science” through a sea of anomalies to “revolutionary science” to a new “normal science” – from “paradigm” to “paradigm”. According to Kuhn, the process is not rational, but explained in terms of psychology, social processes and power relationships.
Paul Feyerabend Epistemic Anarchy In 1958 Feyerabend went to Berkeley, where he turned against Popper, promoting “Epistemological Anarchism” instead (Against Method, 1974). He embraced the inability to reject research programmes, promoting methodological pluralism instead. Denunciations of witchcraft, pseudosciences, etc. are mere expressions of prejudice.
Ludwig Wittgenstein Open Concepts Natural language concepts have an “open structure”, based on family resemblance, not definition.
Ludwig Wittgenstein Open Concepts One of Wittgenstein’s examples: Define “game”, in terms of the necessary and sufficient conditions. Now let’s play a game involving changing those conditions. . . Socrates’ game of taking some sophist’s definition for “love”, “knowledge”, “good” and poking holes in it could be played forever. Hence, Socrates’ phony humility in claiming that he knew nothing. The reality is that our understanding and use of language doesn’t depend on definitions.
1“Science” is an Open Concept Instead of assembling inadequate necessary and sufficient conditions, let’s collect examples of science and non-science and see what the former share in family resemblances. Leave problematic cases for later. Physics Mathematics Epidemiology Medicine Paleontology Religion Climatology Mining Evolution Theory Creationism Economics Politics Political Science Fox News
“Science” is an Open Concept I’d like to suggest the key family resemblances are: Empiricism: insistance on an empirical base versus ideological dominance Abstraction (generalization) and mathematization (when possible) versus anecdotal evidence Social processes encouraging objectivity, intersubjectivity, peer review, Popperian critical rationality versus authoritarianism
Some Pseudoscientific Arguments AGW/ecology/genetic regulatory/etc models are highly abstract, lose track of detailed reality and so are not scientific. George Box: “All models are wrong, but some are useful.” Any computer model will misrepresent continuity, but does it matter? The question is whether the property of the model of interest (mapping to reality) is preserved under model dynamics, not whether irrelevant details are carried along. The demand for “proof” in science is a good indicator of dishonesty.
Some Pseudoscientific Arguments Similarly: the model predicts overall process ok, but omits some really tiny details and therefore is wrong. Here’s an example I gave a data mining class; 120 years of data on business profits. Looks like three different trends concatenated. Let’s just regress just the points from 80-120.
Some Pseudoscientific Arguments Not bad. But some ornery shareholder says, let’s just try years 109-120 instead.
Some Pseudoscientific Arguments As we can all see profits are hardly moving; let’s turf out the board!!
Some Pseudoscientific Arguments NB: profit = global surface temperature; competitiveness = solar energy.
Some References on Scientific Method F Bacon (1620) Novum Organum Scientiarum. JS Mill (1843) System of Logic. M Gardner (1957) Fads and Fallacies in the Name of Science. Dover. T Kuhn (1962) The Structure of Scientific Revolutions. K Popper (1963) Conjectures and Refutations. R Carnap (1966) An Introduction to the Philosophy of Science. C Hitchcock (2004) Contemporary Debates in Philosophy of Science.

Slides can be found here:

 

Kevin KorbMy research is in: machine learning, artificial intelligence, philosophy of science, scientific method, Bayesian inference and reasoning, Bayesian networks, artificial life, computer simulation, epistemology, evaluation theory.

See http://www.csse.monash.edu.au/~korb/ The page is out of date, but accurate as far as it goes.

http://theconversation.com/is-passing-a-turing-test-a-true-measure-of-artificial-intelligence-27801

Email kbkorb [at] gmail {dot} com twitter: @kbkorb
http://theconversation.com/profiles/kevin-korb-115721

Aubrey de Grey – Engaging the Disengaged

There is likely a lot of mileage in engaging the disengaged in untapped support for more efficient progress in regenerative medicine. We need to talk about the familiar and positive aspects of rejuvenation medicine!

Aging issues have appeared in the media a lot recently – all to often the narrative is skewed in the direction of sci-fi sounding future scenarios, and are embedded in sensationalized media stunts, to the effect that for many the ideas ‘go out one ear and out the other’ – the people whom are currently disengaged forget about rejuvenation medicine and loose interest when they hear about the latest patch for their iphone.

There are a lot more people out there in the world besides transhumanists who have resources and energy to transform into meaningful progress in the science of rejuvenation biotechnology.
People also get fixated on long term Malthusian visions or the pseuodoscientific and religious connotations of words like ‘immortality’ and loose sight of the fact that SENS and others are working on _health_.

History shows a bleak picture, but the further back we go, the worse it seems. It seems civilization is getting better at healthy living into older age – now it really is a priority to get better at getting better – effective aging, so to speak.
There is so much in the world to do – many people grow old and unable to do the things they want to do before they have finished doing much of what they want to do. Live is precious – it’s an imperative that we focus on giving people extra healthy life-time for them to do more of the things they love to do.

Aubrey-de-Grey-Engaging-the-Disengaged

The main thing that people misunderstanding is the actual relationship between aging and the diseases of old age – and this is largely the fault of gerontologists….people would go out and say, all the time, ‘Aging is not a disease’ – that’s not useful. Ultimately it’s very counter productive. What happened was people would think to themselves ‘well ok then, aging is this natural thing that’s never going to be amenable to medical intervention, because it’s not a disease – and also because it’s not a disease, then why should we care about it?’ – so it was absolutely the wrong thing to be saying… it’s even more the wrong thing to be saying because it’s not even true. Aubrey de Grey

Aubrey de Grey is the chief science officer of the SENS Research Foundation, which is a 501(c)(3) public charity that is transforming the way the world researches and treats age-related disease.

The research SENS funds at universities around the world and at SENS own Research Center uses regenerative medicine to repair the damage underlying the diseases of aging. The goal of SENS is to help build the industry that will cure these diseases.


Aubrey de Grey was interviewed by Adam Ford in 2012.

Here is a playlist of all the interview sections:

Aubrey de Grey – SENS Therapy Delivery

In this interview Aubrey discusses some of the various approaches that SENS therapy will likely be delivered. Mostly covering gene therapy. Also see this interview where Aubrey de Grey discusses using artificial organs and synthetic devices as replacement parts to aid in defeating aging.

Ex-Vivo Gene Therapy

Ex Vivo Gene Therapy

ref: yolasite.com (click for larger image)

Some things that people are already looking at, for instance introducing new blood stem cells into AIDS patients that contain an AIDS resistant gene named CCR5. A very small portion of people have a natural variant of that gene, called Delta32, which confers very strong resistance to HIV. If you could give this variant of CCR5 this could be a very powerful therapy – luckily the cells that need to have that variant are blood cells – blood cells come from stem cells – so bone marrow transplants with this appropriately modified version of this gene would be very powerful, and that is already being worked on.
There may be very many other cases of inherited diseases (especially) which could be modified and indeed perhaps cured by using genetic modification of stem cells for stem cell therapy.
Now in the case of ageing, this may also be a good way of delivering certain of the SENS therapies – the one that’s most obvious is LysoSENS – the Lyso Enhancement idea for getting rid of the molecular garbage inside of cells – because here we have to introduce new enzymes into these cells (enzymes that are not encoded into the normal human genome) and in some cases it may make sense to actually introduce the enzymes by injecting the enzymes into the circulation in the same way we already treat certain inherited diseases of Lysosomal function (called Lysosomal storage diseases). But in other cases it may be actually be preferable to make genetic modifications to stem cells so that the blood cells or the other cells that are created from those stem cells are able to have that genetic modification and thereby not to accumulate the molecular garbage that we are talking about – perhaps even to eliminate the molecular garbage that had already accumulated.

Somatic Gene Therapy

In_vivo_gene_therapy

ref: yolasite.com (click for larger image)

Some of what were going to need to do in genetic modification of people so as to implement SENS will not, or almost certain not be able to be implemented using ex-vivo gene therapy – the genetic modification of cells outside the body that are then introduced into the body. Some of it is going to have to be done by genetically modifying cells in the body itself. That is what is called ‘Somatic Gene Therapy’ – the way it’s normally done is by engineering a virus contain the engineered DNA that we are interested in and not to contain the DNA that the virus naturally has that makes it bad for us*. And of course gene therapy as an idea has been around for quite a long time – and in fact the first clinical trials of gene therapy happened about 20 years ago. But it’s had a pretty rocky ride because in fact there is an awful lot of risks involved in gene therapy and it doesn’t really work very well yet.
There are certain diseases with a very low hit rate – that is getting a suitable genetic modification to a very small number of cells is enough to be able to actually cure the disease. But in most cases you have to hit quite a lot of cells and we really just don’t know how to do that yet. We at SENS foundation are very interested in helping to address that problem and there is one particular approach to improving very substantially the ability to very safely introduce new DNA into a lot of cells into the body which we are just starting a project to explore. **

* Note this interview was done shortly before CRISPR was discovered.
** This project is called?? Note I will follow up with Aubrey de Grey on this point – but my feeling is that CRISPR may have solved the problem, at least partially

Adeno-Associated Virus

Adeno-associated_virus_serotype_AAV2One of the biggest dangers in somatic gene therapy and also it’s a danger for ex-vivo gene therapy (where you genetically modify stem cells and then you introduce them) is that on occasion the engineered gene may go into the genome in the wrong place – into a place that causes damage in the form of disrupting the DNA that was already there – in a way that you don’t want.  In general that disruption is harmless, but very occasionally it may not be harmless – it may actually make the cell cancerous (and there have been genuine cases of this in clinical trials for particular gene therapies).  So, people are very interested in ways to stop that from happening.  The most obvious way to stop that from happening is to develop a gene therapy vector (a type of virus) that preferentially goes into a particular harmless place in the genome and not go into any of the potentially harmful places – now it turns out that there are some viruses that naturally do this – there is something called AAV (Adeno-Associated Virus) which preferentially go into one particular site of chromosome 19 and people have been very interested in that virus for quite a long time for exactly that reason.  However it turns out that its quite complicated to make that really work and the hit-rate is not good enough – it still has random integration at an unacceptably high level.   So people will want to find other ways to go about this – and there really are lot’s of very creative technologies out there that are being explored to do exactly that.  I’m very optimistic that quite soon we will have gene therapy that very robustly does not disrupt DNA that it would be dangerous to disrupt.

RNA Interference

I believe there are other types of manipulation of gene expression other than gene therapy are also potentially valuable in treatment of ageing and of course medicine in general.  A lot of interest these days is in RNA Interference (RNAi) which is a method for inhibiting expression of particular proteins by introducing short RNA molecules that interfere with that process.  And that’s got a lot of potential – people are looking into it in a variety of different applications – one area that people have been trying to look into it for is cancer.  So see if one can close down cells that are over -expressing when they shouldn’t be over-expressing (for example).  Personally I’m not very optimistic about this application for cancer because it’s just too easy for cancers to mutate into a form that makes the RNAi in-effective – so the short RNA does not work anymore.  But in other applications it might be useful.

Neuro-Regeneration

So the brain is of course arguably the most essential to repair from the damage of ageing – there’s not much point in rebuilding the rest of the body if you are demented – how hard is that?  In particular is it significantly harder (to repair) than the rest of the body?  I believe it’s not significantly harder than the rest of the body – ultimately the brain is certainly vastly more complicated than any other organ, and we are vastly more ignorant about how it works than we are about any other organ – but the thing about SENS, the thing about the whole preventative maintenance approach to combating ageing is that we don’t need to understand how the organ works in order to restore its function or we need to do is understand what its made of, and more specifically how what it’s made of changes throughout life so that we can reverse these changes – repair those changes – and put structure and composition of the organ back to how it was at an earlier stage in early adulthood and thereby restore its function irrespective of our ignorance of how that function arises from that structure – that’s just as true for the brain and any other organ.  So one example of this is the fact that brain cells (neurons) don’t divide, and in most cases don’t have per-cursor cells that don’t divide either – there are a couple of areas of the brain that do exhibit the creation of new neurons throughout adulthood – the rest of the brain doesn’t luckily the rest of the brain exhibits a very very very slow rate of cell death – so it’s not really a problem – and the problems we need to fix are the problems of accumulation of garbage inside neurons for example, or outside of neurons that make those neurons not work so well even while those neurons are still alive.

 

Aubrey-de-Grey---SNES-Therapy-Delivery


Aubrey de Grey is the chief science officer of the SENS Research Foundation, which is a 501(c)(3) public charity that is transforming the way the world researches and treats age-related disease.

The research SENS funds at universities around the world and at SENS own Research Center uses regenerative medicine to repair the damage underlying the diseases of aging. The goal of SENS is to help build the industry that will cure these diseases.


Aubrey de Grey was interviewed by Adam Ford in 2012.

Here is a playlist of all the interview sections: