How science fails

There is a really interesting Aeon article on what bad science, and how it fails.

What is Bad Science?
According to Imre Lakatosh, science degenerates unless it is both theoretically and experimentally progressive. Can Lakatosh’s ‘scientific programme’ approach, which incorporates merits of both Khunian and Popperian ideas, help solve this problem?

Is our current research tradition adequate and effective enough to solve seemingly intractable scientific problems in a timely manner (i.e. in foundational theoretical physics or climate science)?
Ideas are cheap, but backing them up with sound hypotheses (main and auxiliary) predicting novel stuff and experimental evidence aimed at confirming this stuff _is expensive_ given time/resource constraints means that among other things an ideal experimental progressiveness is sometimes not achievable.

A scientific programme is considered ‘degenerating’ if:
1) it’s theoretically degenerating because it doesn’t predict novel facts (it just accommodates existing facts); no new forecasts
OR
2) it’s experimentally degenerating because none of the predicted novel facts can be tested (i.e. string theory)

Lakatosh’s ideas (that good science is both theoretically and experimentally progressive) may serve as groundwork for further maturing what it means to ‘do science’ where an existing dominant programme is no longer able to respond to accumulating anomalies – which was the reason why Kuhn wrote about changing scientific paradigms – but unlike Kuhn, Lakatos believes that a ‘gestalt-switch’ or scientific revolution should be driven by rationality rather than mob psychology.
Though a scientific programme which looks like it is degenerating may be just around the corner from a breakthrough…

For anyone seeking an unambiguously definitive demarcation criterion, this is a death-knell. On the one hand, scientists doggedly pursuing a degenerating research programme are guilty of an irrational commitment to bad science. But, on the other hand, these same scientists can legitimately argue that they’re behaving quite rationally, as their research programme ‘might still be true’, and salvation might lie just around the next corner (which, in the string theory programme, is typically represented by the particle collider that has yet to be built). Lakatos’s methodology doesn’t explicitly negate this argument, and there is likely no rationale that can.

Lakatos argued that it is up to individual scientists (or their institutions) to exercise some intellectual honesty, to own up to their own degenerating programmes’ shortcomings (or, at least, not ‘deny its poor public record’) and accept that they can’t rationally continue to flog a horse that appears, to all intents and purposes, to be quite dead. He accepted that: ‘It is perfectly rational to play a risky game: what is irrational is to deceive oneself about the risk.’ He was also pretty clear on the consequences for those indulging in such self-deception: ‘Editors of scientific journals should refuse to publish their papers … Research foundations, too, should refuse money.’

This article is totally worth a read…

https://aeon.co/essays/imre-lakatos-and-the-philosophy-of-bad-science

The Problem of Feral Cats

Feral cats kill about 1 million native animals per day in ecosystems which didn’t evolve to cope with cats.  How should we deal with the problem of feral cats? I hear a lot of ‘kill ’em all’ [1]. When in HK I noticed a lot of cats with one ear slightly smaller.. then found out that there were vans of vets capturing then de-sexing cats, marking them by taking a small slice of their ear, then releasing them. I thought that this was a compassionate approach, though may have cost more to do than just killing the cats.
This issue raises some interesting fundamental questions that humans often seem all to ready to answer with our amygdalas – it’s hard not to, it’s in our nature.  Though we do realize that us humans have had the largest impact on the ecology – and that it’s our own fault feral cats are here.  Despite it being humanity’s fault, the feral cat problem still remains. As long as there are a population of human pet owners won’t be 100% responsible for their cats, the feral cat problem will always exist.  A foolproof morality pill for humans and their pets seems quite far off – so in the mean time, we can’t depend on changing cat and human behaviour.

To date, feral cat eradication has only been successful on small islands – not on mainlands.  Surprisingly, it was accidentally found that low-level culling feral cats may increase their numbers based on observation in the forests of southern tasmania – “Increases in minimum numbers of cats known to be alive ranged from 75% to 211% during the culling period, compared with pre- and post-cull estimates, and probably occurred due to influxes of new individuals after dominant resident cats were removed.”

A study by CSIRO, which advocates considering researching and eventually using gene drives, says:

So far, traditional controls like baiting have not been effective on cats. In fact, the only way land managers have been able to stop cats from getting at our native animals is to construct cat-proof fencing around reserve areas, like those managed by Australian Wildlife Conservancy, then removing all the cats inside and allowing native mammals to flourish. This isn’t considered sustainable in the long term and, outside the fences, this perfect storm of predatory behaviour has continued to darken our biodiversity landscape.

The benefit of gene drives is that it can reduce and even eventually eradicate feral cat populations without killing the cats, but by essentially making it so feral cat offspring all end up male.

…there is hope on the horizon—gene drive technology. Essentially, gene drives are systems that can bias genetic inheritance via sexual reproduction and allow a particular genetic trait to be passed on from a parent organism to all offspring, and therefore the ability of that trait to disperse through a population is greatly enhanced… Using this type of genetic modification (GM) technology, it becomes theoretically possible to introduce cats into the feral populations to produce only male offspring. Over time, the population would die out due to lack of breeding partners.

Research into gene-drives and broader genetics can help solve a lot of other related problems.  Firstly I don’t assume we should  just assume that future tech will be able to solve all our problems, though if we sequenced as much species as possible and kept highly accurate and articulate records of ecosystems, this may help to rejuvenate or even revive species and their habitats at some time in the future – and genetics (esp gene-drives and CRISPR) research has proven to be very powerful – so from the point of view of wildlife / ecosystem preservation, a catalog and revive strategy is surely worthy of serious consideration. One might see it as restoration ecology + time travel.

There are a myriad of considerations but what are the fundamental, ultimate goals of mitigating the negative impacts of feral cats? Two goals may conflict – species preservation and overall suffering reduction. Should we see single goals as totalizing narratives – in practice perhaps not – but great fodder for thought experiments:
1) Species preservation: If this is the ultimate goal, acknowledging that the most upstream cause of feral cats are humans, we could impose staggeringly huge fines on people for not being responsible pet owners – and use that to fund studies and programs for ecosystem preservation – given current technology we can’t resurrect long gone species, though we can try to more deeply catalog species genomes and ecosystem configurations with the hope that one day once we solve human irrationality, perhaps we can then be in a position to choose to engage in efficient comprehensive re-wilding programs – incidentally we may wish to curb the population of pet lovers (for the record, that’s a joke :))
2) If Suffering reduction is the ultimate goal then that really changes things up – there is a ridiculous amount of suffering in the wild, as both David Pearce and Richard Dawkins show. Should we eradicate nature? I’ll stop there.

The total amount of suffering per year in the natural world is beyond all decent contemplation. During the minute that it takes me to compose this sentence, thousands of animals are being eaten alive, many others are running for their lives, whimpering with fear, others are slowly being devoured from within by rasping parasites, thousands of all kinds are dying of starvation, thirst, and disease. It must be so. If there ever is a time of plenty, this very fact will automatically lead to an increase in the population until the natural state of starvation and misery is restored. In a universe of electrons and selfish genes, blind physical forces and genetic replication, some people are going to get hurt, other people are going to get lucky, and you won’t find any rhyme or reason in it, nor any justice. The universe that we observe has precisely the properties we should expect if there is, at bottom, no design, no purpose, no evil, no good, nothing but pitiless indifference.Richard Dawkins, River Out of Eden: A Darwinian View of Life

Interview with David Pearce on ‘Wild animal suffering – Ethics of Wildlife Management and Conservation Biology’

David Pearce advocates for a benign compassionate stewardship of nature, alleviating suffering in the near and long term futures using high technology (assuming that ultimately the whole world will be computationally accessible to the micromanagement needed for benign hyper-stewardship of nature).

https://www.spca.org.hk/en/animal-birth-control/cat-colony-care-programme

[1] A discussion in a FB group ‘Australian Freethinkers’ – the OP was “What do you think about the feral cats in Australia?

I hear farmers shoot them. They are huge.

They can’t be doing anything good for small rare marsupials.

Should we be aiming to kill them all?”

John Wilkins – Comprehension and Compression

“In short, data is not knowledge; knowledge is not comprehension; comprehension is not wisdom”

The standard account of understanding has been, since Aristotle, knowledge of the causes of an event or effect. However, this account fails in cases where the subject understood is not causal. In this paper I offer an account of understanding as pattern recognition in large sets of data without the presumption that the patterns indicate causal chains.

All nervous systems by nature desire to process information. Consequently, entities with nervous systems tend to find information everywhere, and on the principle that if some is good a lot is better, we have come up with “Big Data”, which is often suggested as the solution to the problems of one science or another, although it is unclear exactly what counts as big data and how it is supposed to do this. In this paper I will argue (i) that understanding does not and cannot come from larger and higher dimensionality data sets, but from structure in the data that can be literally comprehended; and (ii) that big data multiplies uncertainties unless it can be summarized. In short, data is not knowledge; knowledge is not comprehension; comprehension is not wisdom.


Slides can be found here: https://www.slideshare.net/jswilkins/comprehension-as-compression

Event was held at Melbourne Uni in 2019: https://www.meetup.com/en-AU/Science-Technology-and-the-Future/events/265580084/

 

Consider supporting SciFuture by Subscribing to the SciFuture YouTube channel: http://youtube.com/subscription_center?add_user=TheRationalFuture

 

Anders Sandberg – Freeman Dyson, Galactic Megastructures, Physical Eschatology & the Fermi Paradox

Many of you know the sad news that theoretical physicist & mathematician Freeman Dyson has passed away, so in celebration of his life and achievements, Anders Sandberg (Future of Humanity Institute) discusses Freeman Dyson’s influence on himself and others – How might advanced alien civilizations develop (and indeed perhaps our own)?

We discuss strategies for harvesting energy – star engulfing Dyson Spheres or Swarms, black hole swallowing tungsten dyson super-swarms and other galactic megastructures, we also discuss Kardashev scale civilizations (Kardashev was another great mind who we lost recently), reversible computing, birthing ideal universes to live in, Meinong’s jungle, ‘eschatological engineering’, the aestivation hypothesis, and how all this may inform strategies for thinking about the Fermi Paradox and what this might suggest about the likelihood of our civilization avoiding oblivion.  though Anders is more optimistic than some about our chances of survival..

 

 

Anders Sandberg (Future of Humanity Institute in Oxford ) is a seminal transhumanist thinker from way back who has contributed a vast amount of mind blowing material to futurology & philosophy in general. https://en.wikipedia.org/wiki/Anders_Sandberg

Happy Future Day (march 1st) : http://future-day.org

Freeman Dyson: https://en.wikipedia.org/wiki/Freeman_Dyson
Dyson Sphere: https://en.wikipedia.org/wiki/Dyson_sphere
Aestivation Hypothesis: https://en.wikipedia.org/wiki/Aestivation_hypothesis
Reversible Computing: https://en.wikipedia.org/wiki/Reversible_computing
Kardashev Scales: https://en.wikipedia.org/wiki/Kardashev_scale
Nikolai Kardashev: https://en.wikipedia.org/wiki/Nikolai_Kardashev

[Audio version] [Video here]

Conference: AI & Human Enhancement – Understanding the Future – Early 2020

Introduction

Overview

The event will address a variety of topics futurology (i.e. accelerating change & long term futures, existential risk, philosophy, transhumanism & ‘the posthuman’) in general though it will have a special focus on Machine Understanding.
How will we operate along side artificial agents that increasingly ‘understand’ us, and important aspects of the world around us?
The ultimate goal of AI is to achieve not just intelligence in the broad scene of the word, but understanding – the ability to understand content & context, comprehend causation, provide explanations and summarize material etc.  Arguably perusing machine understanding has a different focus to artificial ‘general’ intelligence – where a machine could behave with a degree of generality, without actually understanding what it is doing.

To explore the natural questions inherent within this concept the conference aims to draw on the fields of AI, AGI, philosophy, cognitive science and psychology to cover a diverse set of methods, assumptions, approaches, and systems design and thinking in the field of AI and AGI.

We will also explore important ethical questions surrounding transformative technology, how to navigate risks and take advantage of opportunities.

When/Where

Dates: Slated for March or April 2020 – definite dates TBA.

Where: Melbourne, Victoria, Australia!

Speakers

We are currently working on a list of speakers – as at writing, we have confirmed:

John S. Wilkins (philosophy of science/species taxonomy) –   Author of ‘Species: The Evolution of the Idea‘, co-author of ‘The Nature of Classification: Relationships and Kinds in the Natural Sciences‘.   Blogs at ‘Evolving Thoughts‘.

Dr. Kevin B. Korb (philosophy of science/AI)  – Co-founded Bayesian Intelligence with Prof. Ann Nicholson in 2007. He continues to engage in research on the theory and practice of causal discovery of Bayesian networks (aka data mining with BNs), machine learning, evaluation theory, the philosophy of scientific method and informal logic.   Author of ‘Bayesian Artificial Intelligence‘ and co-author of ‘Evolving Ethics

 

David Pearce (philosophy, the hedonistic imperative) – British philosopher and co-founder of the World Transhumanist Association, currently rebranded and incorporated as Humanity+, Inc., and a prominent figure within the transhumanist movement. He approaches ethical issues from a lexical negative utilitarian perspective.   Author of ‘The Hedonistic Imperative‘ and ‘The Abolitionist Project

Stelarc (performance artist) – Cyprus-born performance artist raised in the Melbourne suburb of Sunshine, whose works focus heavily on extending the capabilities of the human body. As such, most of his pieces are centered on his concept that “the human body is obsolete”.  There is a book about Stelarc and his works – ‘Stelarc: The Monograph (Electronic Culture: History, Theory, and Practice)‘ which is edited by Marquard Smith.

Jakob Hohwy (head of philosophy at Monash University) – philosopher engaged in both conceptual and experimental research. He works on problems in philosophy of mind about perception, neuroscience, and mental illness.  Author of ‘The Predictive Mind‘.

Topics

Human Enhancement, Transhumanism & ‘the Posthuman’

Human enhancement technologies are used not only to treat diseases and disabilities, but increasingly also to increase human capacities and qualities. Certain enhancement technologies are already available, for instance, coffee, mood brighteners, reproductive technologies and plastic surgery.   On the one hand, the scientific community has taken an increasing interest in innovations and allocated substantial public and private resources to them. While on the other hand, such research can have an impact, positive or negative, on individuals, the society, and future generations. Some have advocated the right to use such technologies freely, considering primarily the value of freedom and individual autonomy for those users. Others have called attention to the risks and potential harms of these technologies, not only for the individual, but also for society as a whole. Such use, it is argued, could accentuate the discrimination among persons with different abilities, thus increasing injustice and the gap between the rich and the poor. There is a dilemma regarding how to regulate and manage such practices through national and international laws, so as to safeguard the common good and protect vulnerable persons.

Long Term Value and the Future of Life in the Universe

It seems obvious that we should have a care for future generations – though how far into the future should our concern expire?    This obvious sounding idea can lead to surprising conclusions.

Since the future is big, there could be overwhelmingly far more people in the future than in there are in the present generation. If you want to have a positive impact on lives, and are agnostic as to when the impact is realised, your key concern shouldn’t be to help the present generation, but to ensure that the future goes well for life in the long-term.

This idea is often confused with the claim that we shouldn’t do anything to help people in the present generation. But the long-term value thesis is about what most matters – and what we do to have a positive impact on the future of life in the universe is an extremely important and fascinatingly complicated question.

Artificial Intelligence & Understanding

Following on from a workshop at AGI17 on ‘Understanding Understanding’ we will cover many fascinating questions, such as:

  • What is understanding?
    • How should we define understanding?
    • Is understanding an emergent property of intelligent systems? And/or a central property of intelligent systems?
    • What are the typologies or gradations of understanding?
    • Does understanding relate to consciousness?  If so how?
    • Is general intelligence necessary and/or sufficient to achieve understanding in an artificial system?
    • What differentiates systems that do and do not have understanding?
  • Why focus on developing machine understanding?
    • Isn’t human understanding enough?
    • What are the pros/cons of developing MU?
    • Is it ethical to develop it?
    • Does morality come along for the ride once MU is achieved?
    • How could MU help solve the ‘value loading’ problem in AI alignment?
  • How create machine understanding?
    • What is required in order to achieve understanding in machines?
    • How can we create systems that exhibit understanding?
    • and how can we test for understanding?
    • Can understanding be achieved through hand-crafted architectures or must it emerge through self-organizing (constructivist) principles?
    • How can mainstream techniques be used towards the development of machines which exhibit understanding?
    • Do we need radically different approaches than those in use today to build systems with understanding?
    • Does building artificially intelligent machines with versus without understanding depend on the same underlying principles, or are these orthogonal approaches?
    • Do we need special programming languages to implement understanding in intelligent systems?
    • How can current state of the art methods in AGI address the need for understanding in machines?
  • When is machine understanding likely to occur?
    • What types of research/discoveries are likely to accelerate progress towards MU?
    • What may hinder progress?

The conference will also cover aspects of futurology in general, including transhumanism, posthumanism, reducing suffering, and the long term future.

 

 

Event: Stelarc – Contingent & Contestable Futures

STELARC – CONTINGENT AND CONTESTABLE FUTURES: DIGITAL NOISE, GLITCHES & CONTAMINATIONS

Synopsis: In the age of the chimera, uncertainty and ambivalence generate unexpected anxieties. The dead, the near-dead, the brain dead, the yet to be born, the partially living and synthetic life all now share a material and proximal existence, with other living bodies, microbial life, operational machines and executable and viral code. Digital objects proliferate, contaminating the human biome. Bodies become end effectors for other bodies in other places and for machines elsewhere, generating interactive loops and recursive choreographies. There was always a ghost in the machine, but not as a vital force that animates but rather as a fading attestation of the human.

Agenda

5.45 – Meet, great, and eat.. pub food – it’s actually not bad! Feel free to come early to take advantage of the $8.50 pints from 4.00-6.00.
6.40 – Adam Ford – Introduction
6.50 – Stelarc – Talk: Contingent & Contestable Futures

Where: The Clyde Hotel (upstairs in function room) 385 Cardigan St, Carlton VIC 3053 – bring your appetite, there is a good menu: https://www.theclydehotel.com.au
When: Thursday July 25th – 5.45 onwards, though a few of us will be there earlier (say 5pm) to take advantage of the $8.50 pints (from 4pm onwards – if you say you are with STF you will get $8.50 pints all night)

*p.s. the event will likely be videoed – if you have any issues with being seen or heard on YouTube, please let us know.

BRIEF BIOGRAPHICAL NOTES

Stelarc experiments with alternative anatomical architectures. His performances incorporate Prosthetics, Robotics, VR and Biotechnology. He is presently surgically constructing and augmenting an ear on his arm. In 1996 he was made an Honorary Professor of Art and Robotics, Carnegie Mellon University and in 2002 was awarded an Honorary Doctorate of Laws by Monash University. In 2010 he was awarded the Ars Electronica Hybrid Arts Prize. In 2015 he received the Australia Council’s Emerging and Experimental Arts Award. In 2016 he was awarded an Honorary Doctorate from the Ionian University, Corfu. His artwork is represented by Scott Livesey Galleries,
Melbourne. www.stelarc.org

Denis Odinokov – Conquering Cross-Linking for Biomedical Longevity

In order to achieve biomedical longevity, the problem of cross-Linking of the extracellular matrix needs to be addressed. Cells are held together by special linking proteins. When too many cross-links form between cells in a tissue, the tissue can lose its elasticity and cause problems including arteriosclerosis, presbyopia and weakened skin texture. These are chemical bonds between structures that are part of the body, but not within a cell. In senescent people many of these become brittle and weak. Fixing cross-linking may prove more difficult than just removing it – as it may create a vacuum where more waste is pulled in to fill the void left behind. Though some research is being conducted, the problem deserves a lot more hands on deck – and far more funding.
Denis gives a technical explanation of why conquering cross-linking is important, and strategies for addressing this problem in this interview conducted at the Undoing Aging conference in Berlin 2019.

Introduction to Denis’ writing/research here – “The Impact of Extracellular Matrix Proteins Cross-linking on the Aging Process“.

Understanding the consequences of the formation of protein crosslinks requires more attention both from the scientific community and independent researchers who are passionate with regards to the extension of the human lifespan. By doing so, it allows us to level up the playing field where we can create and work on more serious and impactful solutions.

Also see GlycoSENSSENS proposes to further develop small-molecular drugs and enzymes to break links caused by sugar-bonding, known as advanced glycation endproducts, and other common forms of chemical linking.

 

Reason – Philosophy Of Anti Aging: Ethics, Research & Advocacy

Reason was interviewed at the Undoing Aging conference in Berlin 2019 by Adam Ford – focusing on philosophy of anti-aging, ethics, research & advocacy. Here is the audio!

And the video:

Topics include philosophical reasons to support anti-aging, high impact research (senolytics etc), convincing existence proofs that further research is worth doing, how AI can help and how human research (bench-work) isn’t being replaced by AI atm or in the foreseeable future, suffering mitigation and cause prioritization in Effective Altruism – how the EA movement sees anti-aging and why it should advocate for it, population effects (financial & public health) of an aging population and the ethics of solving aging as a problem…and more.

Reason is the founder and primary blogger at FightAging.org

Jerry Shay – The Telomere Theory of Ageing – Interview At Undoing Ageing, Berlin, 2019

“When telomeres get really short that could lead to a dna damage signal and cause cells to undergo a phenomenon called ‘replicative senescence’…where cells can secrete things that are not necessarily very good for you..”

Why is it that immune cells don’t work as well in older age?

Listen to the interview here

Jerry and his team compared a homogeneous group of centenarians in northern Italy to 80 year olds and 30 year olds – and tested their immune cells (T-Cells) for function (through RNA sequencing) – what was observed was all the young people clustered apart from most of the old people clustered.. but the centenarians didn’t cluster in any one spot.  It was found that the centenarians clustered along side the younger cohorts had better telomere length.

Out of 7 billion people on earth, there is only about ~ half a million centenarians – most of them are frail – though the ones with longer telomeres and more robust T-Cell physiology seem to be quite different to the frail centenarians.   What usually happens is when telomeres wear down the DNA in the cell gets damaged, triggering a DNA damage response. From this, Jerry and his team made a jump in logic – maybe there are genes (i.e. telomere [telomere expression genes?]) that when the telomeres are long these genes are repressed, and when the telomeres short the genes get activated – circumventing the need for a DNA damage response.  What is interesting is that they found genes that are really close to the telomere genes (cytokines – inflammatory gene responses – TNF Alpha, Ennalucan 1 etc) – are being activated in humans – a process called ‘Telomere Looping’. As we grow and develop our telomeres get longer, and at a certain length they start silencing certain inflammation genes, then as we age some of these genes get activated – this is sometimes referred to as the ‘Telomere Clock’.  Centenarians who are healthy maintain longer telomeres and don’t have these inflammation genes activated.

 

During early fetal development (12-18 weeks) telomerase gets silenced – it’s always been thought that this was to stop early onset of cancer – but Dr Shay asked, ‘why is it that all newborns have about the same length of telomeres?’ – and it’s not just in humans, it’s in other animals like whales, elephants, and many large long-lived mammal – this doesn’t occur in smaller mammals like mice, rats or rabbits.   The concept is that when the telomere is long enough, it loops over and silences its own gene, which stays silent until we are older (and in need of it again to help prevent cancer).

This Telomere Looping probably evolved as part of Antagonistic Pleiotropy – where things that may have a protection or advantage early in life may have unpredicted negative consequences later in life. This is what telomerase is for – we as humans need it in very early development, as do large long-lived mammals, and  a mechanism to shut it off – then at a later older age it can be activated again to fight against cancer.

 

There is a fair amount of evidence for accumulated damage as hallmarks for ageing – can we take a damage repair approach to rejuvenation medicine?

Telomere spectrum disorders or telomeropathies – human diseases of telomere disfunction – diseases like idiopathic pulmonary fibrosis in adults and dyskeratosis congenita in young children who are born with reduced amounts of telomeres and telomerase – they get age related diseases very early in life.  Can they be treated? Perhaps through gene therapy or by transiently elongating their telomeres. But can this be applied for the general population too?  People don’t lose their telomeres at the same rate – we know it’s possible for people to keep their telomeres long for 100 years or more – it’s just not yet known how.  It could be luck, likely it has a lot to do with genetics.

 

Ageing is complex – no one theory is going to explain everything about ageing – the telomere hypothesis of ageing perhaps makes up for about on average 5% or 10% of aging – though understanding it enough might give people an extra 10% of healthy life.   Eventually it will be all about personalised medicine – with genotyping we will be able to say you have about a 50% chance of bone marrow failure when you’re 80 years old – then if so you may be a candidate for bone marrow rejuvenation.

What is possible in the next 10 years?

 

Inflammation is highly central to causing age related disease.  Chronic inflammation can lead to a whole spectrum of diseases. The big difference between the subtle low grade inflammation that we have drugs for – like TNF blockers (like Humira and Enbrel) which subtly reduce inflammation – people can go into remission from many diseases after taking this.

There are about 40 million people on Metformin in the USA – which may help reduce the consequences of ageing – this and other drugs like it are safe drugs – if we can find further safe drugs to reduce inflammation etc this could go a long way – Aspirin perhaps (it’s complicated) – but it doesn’t take much to get a big bang out of a little intervention – the key to all this is safety – we don’t want to do any harm – so metformin and Asprin have been proven to be safe over time – now we need to learn how to repurpose those to specifically address the ageing problem.

 

Historically we have more or less ignored the fundamental problem of ageing and targeted specific diseases – but by the time you are diagnosed, it’s difficult to treat the disease – by the time you have been diagnosed with cancer, it’s likely so far advanced that it’s difficult to stop the eventual outcomes.   The concept of intervening in the ticking clock of ageing is becoming more popular now. If we can intervene early in the process we may be able to mitigate downstream diseases.

Jerry has been working on what they call a ‘Telomerase Mediated Inhibitor’ (see more about telomerase meditation here) – “it shows amazing efficacy in reducing tumor burden and improving immune cell function at the same time – it gets rid of the bad immune cells in the micro environment, and guess what?  the tumors disappear – so I think there’s ways to take advantage of the new knowledge of ageing research and apply it to diseases – but I think it’s going to be a while before we think about prevention.”

Unfortunately in the USA, and really globally “people want to have their problems their lifestyles the way they want them, and when something goes wrong, they want the doctor to come and and give them a pill to fix the problem instead of taking personal responsibility and saying that what we should be doing is preventing it in the first place.”  We all know that prevention is important, though most don’t want to practise prevention over the long haul.

 

The goal of all this not necessarily to live longer, but to live healthier – we now know that the costs associated with intervening with the pathologies associated with ageing is enormous.  Someone said that the 25% of medicare costs in the USA is in treating people that are on dialysis – that’s huge. If we could compress the number of years of end of life morbidities into a smaller window, it would pay for itself over and over again.   So the goal is to increase healthspan and reduce the long period of chronic diseases associated with ageing. We don’t want this to be a selected subgroup who have access to future regenerative medicine – there are many people in the world without resources or access at this time – we hope that will change.

Jerry’s goal is to take some of the discovered bio-markers of both healthy and less healthy older people – and test them out on larger population numbers – though it’s very difficult to get the funding one needs to conduct large population studies.

Keith Comito on Undoing Ageing

What is the relationship between anti-aging and the reduction of suffering? What are some common objections to the ideas of solving aging? How does Anti-Aging stack up against other cause areas (like climate change, or curing specific diseases)? How can we better convince people of the virtues of undoing the diseases of old age?

Keith Comito, interviewed by Adam Ford at the Undoing Aging 2019 conference in Berlin, discusses why solving the diseases of old age is powerful cause. Note the video of this interview will be available soon. He is a computer programmer and mathematician whose work brings together a variety of disciplines to provoke thought and promote social change. He has created video games, bioinformatics programs, musical applications, and biotechnology projects featured in Forbes and NPR.

In addition to developing high-profile mobile applications such as HBO Now and MLB AtBat, he explores the intersection of technology and biology at the Brooklyn community lab Genspace, where he helped to create games which allow players to direct the motion of microscopic organisms.

Seeing age-related disease as one of the most profound problems facing humanity, he now works to accelerate and democratize longevity research efforts through initiatives such as Lifespan.io.

He earned a B.S. in Mathematics, B.S. in Computer science, and M.S. in Applied Mathematics at Hofstra University, where his work included analysis of the LMNA protein.