Philosophy of Science – What & Why?

Interview with John Wilkins:

John-Wilkins---Phil-Sci-IntroEvery so often, somebody will attack the worth, role or relevance of philosophy on the internets, as I have discussed before. Occasionally it will be a scientist, who usually conflates philosophy with theology. This is as bad as someone assuming that because I do some philosophy I must have the Meaning of Life (the answer is, variously, 12 year old Scotch, good chocolate, or dental hygiene).

But it raises an interesting question or two: what is the reason to do philosophy in relation to science? being the most obvious (and thus set up the context in which you can answer questions like: are there other ways to find truth than science?). So I thought I would briefly give my reasons for that.

When philosophy began around 500BCE, there was no distinction between science and philosophy, nor, for that matter, between religion and philosophy. Arguably, science began when the pre-Socratics started to ask what the natures of things were that made them behave as they did, and equally arguably the first actual empirical scientist was Aristotle (and, I suspect, his graduate students).

But a distinction between science and philosophy began with the separation between natural philosophy (roughly what we now call science) and moral philosophy, which dealt with things to do with human life and included what we should believe about the world, including moral, theological and metaphysical beliefs. The natural kind was involved in considering the natures or things. A lot gets packed into that simple word, nature: it literally means “in-born” (natus) and the Greek physikos means much the same. Of course, something can be in-born only if it is born that way (yes, folks, she’s playing on some old tropes here!), and most physical things aren’t born at all, but the idea was passed from living to nonliving things, and so natural philosophy was born. That way.

In the period after Francis Bacon, natural philosophy was something that depended crucially on observation, and so the Empiricists arose: Locke, Berkeley, Hobbes, and later Hume. That these names are famous in philosophy suggests something: philosophy does best when it is trying to elucidate science itself. And when William Whewell in 1833 coined the term scientist to denote those who sought scientia or knowledge, science had begun its separation from the rest of philosophy.

Or imperfectly, anyway. For a start the very best scientists of the day, including Babbage, Buckland and Whewell himself wrote philosophical tomes alongside theologians and philosophers. And the tradition continues until now, such as the recent book by Stephen Hawking in which he declares the philosophical enterprise is dead, a decidedly philosophical claim to make. Many scientists seem to find the doing of philosophy inevitable.

So why do I do philosophy of science? Simply because it is where the epistemic action is: science is where we do get knowledge, and I wish to understand how and why, and the limitations. All else flows from this for me. Others I know (and respect) do straight metaphysics and philosophy of language, but I do not. It only has a bite if it gives some clarity to science. I think this is also true of metaphysics, ethics and such matters as philosophy of religion.

Now there are those who think that science effectively exhausts our knowledge-gathering. This, too, is a philosophical position, which has to be defended, and elaborated (thus causing more philosophy to be done). I don’t object to that view, but for me, it is better to be positive (say that science gives us knowledge even if other activities may do) than to be negative (deny that anything but science gives us knowledge). It may be that we get to the latter position after considering the former; if so, that would be a philosophical result.

I am fascinated by science. It allows us to do things no ancient Greek (or West Semitic) thinker would have been even able to conceive of. It means we make fewer mistakes. Philosophy is, and ought only to be, in the service of knowledge (I’m sure somebody has said that before). Science is a good first approximation of that.

But scientists who reject philosophy, as if that very rejection is not a philosophical stance (probably taken unreflectively or on the basis of half-digested emotive appeals), them I have no time for as philosophers. They should perhaps stick to their last and not make fools of themselves.

Not, of course, that every philosopher is worth reading. Sturgeon’s Law (90% of everything is crap) applies here too. But lest any scientist get too smug, recall that 99% of all scientific papers are never cited again many scientific papers are uncited . In philosophy, that ratio is perhaps lower… probably almost down to the Sturgeon limit.

See this post by John Wilkins at Evolving Thoughts: http://evolvingthoughts.net/2011/07/why-do-philosophy-of-science.

Life, Knowledge and Natural Selection – How Life (Scientifically) Designs its Future – Bill Hall

Bill HallStudies of the nature of life, evolutionary epistemology, anthropology and history of technology leads me reluctantly to the conclusion that Moore’s Law is taking us towards some kind of post-human singularity. The presentation explores fundamental aspects of life and knowledge, based on a fusion of Karl Popper’s (1972) evolutionary epistemology and Maturana and Varela’s (1980) autopoietic theory of life to show that knowledge and life must co-evolve, and that this co-evolution leads to exponential growth of knowledge and capabilities to control a planet (and the Universe???). The initial pace, based on changes to genetic heredity, is geologically slow. The addition of the capacity of living cognition for cultural heredity, changes the pace of significant change from millions of years, to millennia. Externalization of cultural knowledge to writing and printing increases the pace to centuries and decades. Networking virtual cultural knowledge at light speed via the internet, increases the pace to years or even months. In my lifetime I have seen the first generation digital computers evolve into the Global Brain.

As long as the requisites for live are available, competition for limiting resources inevitably leads to increasing complexity. Through most of the history of life, a species/individuals’ knowledge was embodied in its dynamic structure (e.g., of the nervous system) and genetic heritage that controls the development and regulation of structure. Some vertebrates evolved sufficient neural complexity to support the development of culture and cultural heredity. A few lineages, such as corvids (crows and their relatives), and two largely arboreal primate lineages (African apes and South American capuchin monkeys) independently evolved cultures able to transmit the knowledge to make and use increasingly complex tools from one generation to the next. Hominins, a lineage of tool-using apes forced by climate change around 4-5 million years ago to learn how to survive by extractive foraging and hunting on grassy savannas developed increasingly complex and sophisticated tool-kits for hunting and gathering, such that by around 2.5 million years ago our ancestors replaced most species of what was originally a substantial ecological guild of large carnivores.

Tools extend the physical and cognitive capabilities of the tool-users. In an ecological sense, hominin groups are defined by their shared survival knowledge, and inevitably compete to control limiting resources. Competition among groups led to the slow development of increasingly better stone and organic tools, and a genetically-based cognitive capacity to make and use tools. Homo heidelbergensis, that split into African (H. sapiens), European (Neanderthals), and Asian (Denisovans) some 200,000 years ago evolved complex linguistic capabilities that greatly increased the bandwidth for transmitting cultural knowledge. Some 70,000 years ago H. sapiens (“humans”) exited Africa to spread throughout Eurasia and quickly replace all other surviving hominin lineages. By ~ 50,000 years ago humans were making complex tools like bows and arrows, which put a premium on the capacity to remember the rapidly increasing volume of survival knowledge. At some point before the end of the last Ice Age, mnemonic tools were developed (“method of loci”, “songlines”) to extend the capacity of living memory by at least one order of magnitude and some 10,000 years ago as agriculture became practical in the “Fertile Crescent” monumental theaters of the mind (such as Göbekli Tepe and Stonehenge) and specialized knowledge management guilds such as the Masons provided the cultural capacity to enable the Agricultural Revolution. 7-4,000 years ago technologies for writing and the use of books and libraries enabled storing and sharing of cultural knowledge in material form external, facilitating the emergence of empires and nation-states.
Around 550 years ago printing enabled the mass production of books and widespread dissemination of bodies of knowledge to fuel the Reformation, Scientific and Industrial revolutions. Around 60 years ago the invention of the digital computer increasingly externalized cognitive processes and controls over other kinds of tools. Databases, word processing and the internet developed over the last ~30 years enabled knowledge to be created in the virtual world and then shared globally at light speed. Personal technologies developed in the last 10 years (e.g., smartphones) are allowing the emergence of post-human cyborgs. Moore’s Law of exponential growth suggests the capacity for a few orders of magnitude more before we reach the outer limits of quantum computing.

What happens next is anyone’s guess.

Slides available here:

 

 

Speaker: David Pearce

David Pearce

David Pearce

David Pearce will be speaking at  Science, Technology & the Future on Nov 30 – Dec 1st 2013 in Melbourne Australia  – he is a British utilitarian philosopher who believes and promotes the idea that there exists a strong ethical imperative for humans to work towards the abolition of suffering in all sentient life. His book-length internet manifesto The Hedonistic Imperative outlines how technologies such as genetic engineering, nanotechnology, pharmacology, and neurosurgery could potentially converge to eliminate all forms of unpleasant experience among human and non-human animals, replacing suffering with gradients of well-being, a project he refers to as “paradise engineering”. A transhumanist and a vegan, Pearce believes that we (or our future posthuman descendants) have a responsibility not only to avoid cruelty to animals within human society but also to alleviate the suffering of animals in the wild.

Pearce is the owner of BLTC Research, a website that was set up by Pearce in 1995. Based in Kemptown, Brighton, UK, the site publishes online texts in support of the biochemical and biotechnological methods by which its proponents believe sentient suffering could be abolished in future generations.

In 1998, Pearce co-founded the World Transhumanist Association (WTA) with Nick Bostrom, an Oxford philosopher. The association, which later changed its name to Humanity+, advocates transhumanism — an ideology and movement which has emerged to support the recognition and protection of the right of citizens either to maintain or modify their own minds and bodies so as to guarantee them the freedom of choice and informed consent of using human enhancement technologies on themselves and their children.

In 2002 Pearce co-founded the Abolitionist Society with Pablo Stafforini, Sean Henderson, and Jaime Savage, in order to help promote the idea of abolitionism of suffering and to discuss the implications involved with a wider range of audience.

Pearce sits on the board of Elsevier’s journal Medical Hypotheses and holds a position at the advisory board of Lifeboat Foundation.[10] He runs a web hosting company.

The Hedonistic Imperative

The Hedonistic Imperative outlines how genetic engineering and nanotechnology will abolish suffering in all sentient life.

pearce david interview with adam fordThe abolitionist project is hugely ambitious but technically feasible. It is also instrumentally rational and morally urgent. The metabolic pathways of pain and malaise evolved because they served the fitness of our genes in the ancestral environment. They will be replaced by a different sort of neural architecture – a motivational system based on heritable gradients of bliss. States of sublime well-being are destined to become the genetically pre-programmed norm of mental health. It is predicted that the world’s last unpleasant experience will be a precisely dateable event.

Two hundred years ago, powerful synthetic pain-killers and surgical anesthetics were unknown. The notion that physical pain could be banished from most people’s lives would have seemed absurd. Today most of us in the technically advanced nations take its routine absence for granted. The prospect that what we describe as psychological pain, too, could ever be banished is equally counter-intuitive. The feasibility of its abolition turns its deliberate retention into an issue of social policy and ethical choice.

This manifesto combines far-fetched utopian advocacy with cold-headed scientific prediction. The Hedonistic Imperative outlines how nanotechnology and genetic engineering will eliminate aversive experience from the living world. Over the next thousand years or so, the biological substrates of suffering will be eradicated completely. “Physical” and “mental” pain alike are destined to disappear into evolutionary history. The biochemistry of everyday discontents will be genetically phased out too. Malaise will be replaced by the biochemistry of bliss. Matter and energy will be sculpted into life-loving super-beings animated by gradients of well-being. The states of mind of our descendants are likely to be incomprehensibly diverse by comparison with today. Yet all will share at least one common feature: a sublime and all-pervasive happiness.

This feeling of absolute well-being will surpass anything contemporary human neurochemistry can imagine, let alone sustain. The story gets better. Post-human states of magical joy will be biologically refined, multiplied and intensified indefinitely. Notions of what now passes for tolerably good mental health are likely to be superseded. They will be written off as mood-congruent pathologies of the primordial Darwinian psyche. Such ugly thoughts and feelings will be diagnosed as typical of the tragic lives of emotional primitives from the previous era. In time, the deliberate re-creation of today’s state-spectrum of normal waking and dreaming consciousness may be outlawed as cruel and immoral.

Such speculations may currently sound fantastical. Yet the ideas behind this manifesto may one day be regarded as intellectually trite – albeit today morally urgent. For as the genetic revolution in reproductive medicine unfolds, what might once have been the stuff of millennialist fantasy is set to become a scientifically feasible research program. Its adoption or rejection will become, ultimately, a social policy issue. Passively or actively, we will have to choose just how much unpleasantness we wish to create or conserve – if any – in eras to come. David Pearce - the Hedonistic Imperative Chapter 1 - The Naturalisation of Heaven

Prophetic Narratives: Will Humanity’s Successors Also Be Our Descendants?

David Pearce spoke at Humanity+ @San Francisco in 2012 – Accelerating technological progress leads some futurists to predict the imminent end of the transhuman era and the dawn of posthuman superintelligence. But what is superintelligence? How does intelligence relate to sentience? What are the Explanatory Gap, Moravec’s Paradox, and the Binding Problem? Will nonbiological machines ever be more than zombies? This talk explores three different narratives for the major evolutionary transition in prospect. In the first narrative, biological humans will rewrite our genetic source code, recursively self-edit our own minds, and bootstrap our way to full-spectrum superintelligence. Mastery of our reward circuitry will deliver life based on information-sensitive gradients of bliss. In the second, Kurzweilian narrative, cybernetic brain implants will enable humans to fuse our minds with artificial intelligence; and also allow humans to scan, digitize and “upload” ourselves into a less perishable substrate. In digital nirvana, the distinction between biological and nonbiological machines will effectively disappear. In the third scenario, most closely associated with mathematician I.J. Good, is a combination of Moore’s law and the advent of recursively self-improving software-based minds will culminate in an ultra-rapid Intelligence Explosion and an era of nonbiological superintelligence. Posthuman superintelligence may or may not be human-friendly. How strong is the supporting evidence for each of these prophecies?

Interviews

Alleivating Suffering & achieving Hedonic Zero / Altruism

The Naturalisation of Heaven – The Lotus Eaters – Happiness & Motivation

The Hedonistic Imperative outlines how genetic engineering and nanotechnology will abolish suffering in all sentient life. This project is ambitious but technically feasible. It is also instrumentally rational and ethically mandatory. The metabolic pathways of pain and malaise evolved only because they once served the fitness of our genes. They will be replaced by a different sort of neural architecture. States of sublime well-being are destined to become the genetically pre-programmed norm of mental health. The world’s last aversive experience will be a precisely dateable event.David Pearce
I predict we will abolish suffering throughout the living world. Our descendants will be animated by gradients of genetically pre-programmed well-being that are orders of magnitude richer than today’s peak experiences.
– p.114 Ethics Matters by Peter and Charlotte Vardy – SCM Press, 2012David Pearce
Video Interviews

For more video interviews please Subscribe to Adam Ford’s YouTube Channel

genomic-bodhisattva

Genomic Bodhisattva interview at H+ Magazine

Maria Entraigues on Anti-Aging and the SENS Research Foundation

Interview conducted in 2012 with Maria Entraigues at the eXtreme Futurist Festival in Los Angeles 2012.
Maria Entraigues is the Global Outreach Coordinator for SENS Research Foundation. As the outreach coordinator for the SENS Research Foundation, Entraigues has represented the Foundation internationally at conferences and in the media, and has explained and promoted the Foundation’s goals of eradicating the diseases and disabilities of aging through innovative biotechnologies, including presentations at conferences internationally. Entraigues is also one of “The 300 Members of Methuselah Foundation”, a group of people committed to help the advancement of technologies to eradicate the needless suffering of age-related disease and extend healthy human life.

The SENS Foundation (Strategies for Engineered Negligible Senescence Foundation) is a 501(c)(3) non-profit organization co-founded by Michael Kope, Aubrey de Grey, Jeff Hall, Sarah Marr and Kevin Perrott, which is based in Mountain View, California, United States. Its activities include SENS-based research programs and public relations work for the acceptance of and interest in scientific rejuvenation research. Before the Foundation was launched in March 2009, the SENS research program was mainly pursued by the Methuselah Foundation, co-founded by Aubrey de Grey and David Gobel.

 

Technological Singularity Panel – Vernor Vinge, David Brin, Phil Osborn, Mitch Wagner

Panelists: David Brin, Phil Osborn, Vernor Vinge, Mitch Wagner. Filmed at Los Con 39 #loscon
On November 24, 2012 at LAX Marriott Hotel, Los Angeles, California.

aleph.se/Trans/Global/Singularity

The technological singularity is a hypothetical event related to the advent of artificial general intelligence (also known as “strong AI”). Such a computer, computer network, or robot would theoretically be capable of recursive self-improvement (redesigning itself), or of designing and building computers or robots better than itself. Repetitions of this cycle would likely result in a runaway effect – an intelligence explosion – where smart machines design successive generations of increasingly powerful machines, creating intelligence far exceeding human intellectual capacity and control. Because the capabilities of such a superintelligence may be impossible for a human to comprehend, the technological singularity is the point beyond which events may become unpredictable or even unfathomable to human intelligence.

The term technological singularity was popularized by mathematician, computer scientist and science fiction author Vernor Vinge, who argues that artificial intelligence, human biological enhancement, or brain–computer interfaces could be possible causes of the singularity.

Guest of Honor: Vernor Vinge
Artist Guest of Honor: Alan White
Fan Guests of Honor: Lloyd Penney & Yvonne Penney
Costume Guest of Art: Mela Hoyt-Heydon

Panel on the Singularity at Loscon

Utopia in Exile – Interview with David Brin

IEET fellow, scientist, best-selling author and tech-futurist, David Brin, sits down with Adam Ford to talk about thought experiments, the technological singularity, rationality, ethics, transhumanism, fiction / non-fiction and futurism.

His novels include Earth, The Postman (filmed in 1997) and Hugo Award winners Startide Rising and The Uplift War. A leading commentator and speaker on modern trends, his nonfiction book The Transparent Society won the Freedom of Speech Award of the American Library Association. Brin’s newest novel EXISTENCE explores the ultimate question: billions of planets are ripe for life. So where is Everybody? David’s main thread: how will we shape the days and years ahead—and how will tomorrow shape us?

Tim Josling – Progress in AI – Humanity+ @Melbourne 2012

Filmed at Humanity+ @Melbourne 2012Abstract here

The Surprising Rate of Progress in Artificial Intelligence Research

Artificial Intelligence is one of the foundations of Transhumanism, along with nanotechnology, biotechnology, and robotics. This talk will survey the rapidly accelerating progress in building machine intelligence, particularly over the last 10 years and the prospects for the next one to three decades. We cover advances in hardware such as the single molecule transistor and the first computer with processing power comparable to the human brain as well as the continuation exponential growth in processing power courtesy of Moore’s Law. Accessible descriptions of breakthroughs in software and algorithms such as self-learning machines, reinforcement learning, Support Vector machines, and hierarchical learning networks illustrate how the “software bottleneck” is being overcome. The talk includes video footage of applications of Artificial Intelligence technology.

Tim-Josling---9Tim Josling studied Law, Anthopology, Philosophy and Mathematics before switching to Computer Science at the dawn of the computer era. He worked on implementing some of the first transactional systems in Australia, later worked on the first ATM networks and was the chief architect for one of the first Internet Banking applications in Australia, and designed an early message switching (“middleware”) application in the USA. During his career he specialised in making large scale applications reliable and fast, saving several major projects from being cancelled due to poor performance and excessive running costs. This led to an interest in the progress of computer hardware and in Moore’s Law, which states that the power of computers grows roughly 10-fold every 5 years. In his spare time he contributed to various open source projects such as the GNU Compiler Collection. After attending the first Singularity Summit in Australia, he decided to retire so he could devote himself full-time to researching Artificial Intelligence, the Technological Singularity and Trans-humanism. He is currently working on applying AI techniques to financial and investment applications.

Tim-Josling---pond-1

 

http://hplusconf.com.au/#menu-13

Humanity+

The Future of Life in the Universe – Lawrence Krauss at the Singularity Summit Australia 2011

Prof. Lawrence M. Krauss is an internationally known theoretical physicist with wide research interests, including the interface between elementary particle physics and cosmology, where his studies include the early universe, the nature of dark matter, general relativity and neutrino astrophysics. He has investigated questions ranging from the nature of exploding stars to issues of the origin of all mass in the universe. He was born in New York City and moved shortly thereafter to Toronto, Canada, where he grew up. He received undergraduate degrees in both Mathematics and Physics at Carleton University. He received his Ph.D. in Physics from the Massachusetts Institute of Technology (1982), then joined the Harvard Society of Fellows (1982-85). He joined the faculty of the departments of Physics and Astronomy at Yale University as assistant professor in 1985, and associate professor in 1988. In 1993 he was named the Ambrose Swasey Professor of Physics, Professor of Astronomy, and Chairman of the department of Physics at Case Western Reserve University. He served in the latter position for 12 years, until 2005. During this period he built up the department, which was ranked among the top 20 Physics Graduate Research Programs in the country in a 2005 national ranking. Among the major new initiatives he spearheaded are included the creation of one of the top particle astrophysics experimental and theoretical programs in the US, and the creation of a groundbreaking Masters Program in Physics Entrepreneurship. In 2002, he was named Director of the Center for Education and Research in Cosmology and Astrophysics at Case.
Video of talk:

Videoed at the Singularity Summit Australia 2011: http://2011.singularitysummit.com.au

Lawrence Krauss - Singularity Summit 2011

Lawrence Krauss – the Universe is Really Really Big!