Joscha Bach – GPT-3: Is AI Deepfaking Understanding?

Joscha Bach on GPT-3, achieving AGI, machine understanding and lots more!


Discussion points:
02:40 What’s missing in AI atm? Unified coherent model of reality
04:14 AI systems like GPT-3 behave as if they understand – what’s missing?
08:35 Symbol grounding – does GPT-3 have it?
09:35 GPT-3 for music generation, GPT-3 for image generation, GPT-3 for video generation
11:13 GPT-3 temperature parameter. Strange output?
13:09 GPT-3 a powerful tool for idea generation
14:05 GPT-3 as a tool for writing code. Will GPT-3 spawn a singularity?
16:32 Increasing GPT-3 input context may have a high impact
16:59 Identifying grammatical structure & language
19:46 What is the GPT-3 transformer network doing?
21:26 GPT-3 uses brute force, not zero-shot learning, humans do ZSL
22:15 Extending the GPT-3 token context space. Current Context = Working Memory. Humans with smaller current contexts integrate concepts over long time-spans
24:07 GPT-3 can’t write a good novel
25:09 GPT-3 needs to become sensitive to multi-modal sense data – video, audio, text etc
26:00 GPT-3 a universal chat-bot – conversations with God & Johann Wolfgang von Goethe
30:14 What does understanding mean? Does it have gradients (i.e. from primitive to high level)?
32:19 (correlation vs causation) What is causation? Does GPT-3 understand causation? Does GPT-3 do causation?
38:06 Deep-faking understanding
40:06 The metaphor of the Golem applied to civ
42:33 GPT-3 fine with a person in the loop. Big danger in a system which fakes understanding. Deep-faking intelligible explanations.
44:32 GPT-3 babbling at the level of non-experts
45:14 Our civilization lacks sentience – it can’t plan ahead
46:20 Would GTP-3 (a hopfield network) improve dramatically if it could consume 1 to 5 trillion parameters?
47:24 GPT3: scaling up a simple idea. Clever hacks to formulate the inputs
47:41 Google GShard with 600 billion input parameters – Amazon may be doing something similar – future experiments
49:12 Ideal grounding in machines
51:13 We live inside a story we generate about the world – no reason why GPT-3 can’t be extended to do this
52:56 Tracking the real world
54:51 MicroPsi
57:25 What is computationalism? What is it’s relationship to mathematics?
59:30 Stateless systems vs step by step Computation – Godel, Turing, the halting problem & the notion of truth
1:00:30 Truth independent from the process used to determine truth. Constraining truth that which can be computed on finite state machines
1:03:54 Infinities can’t describe a consistent reality without contradictions
1:06:04 Stevan Harnad’s understanding of computation
1:08:32 Causation / answering ‘why’ questions
1:11:12 Causation through brute forcing correlation
1:13:22 Deep learning vs shallow learning
1:14:56 Brute forcing current deep learning algorithms on a Matrioshka brain – would it wake up?
1:15:38 What is sentience? Could a plant be sentient? Are eco-systems sentient?
1:19:56 Software/OS as spirit – spiritualism vs superstition. Empirically informed spiritualism
1:23:53 Can we build AI that shares our purposes?
1:26:31 Is the cell the ultimate computronium? The purpose of control is to harness complexity
1:31:29 Intelligent design
1:33:09 Category learning & categorical perception: Models – parameters constrain each other
1:35:06 Surprise minimization & hidden states; abstraction & continuous features – predicting dynamics of parts that can be both controlled & not controlled, by changing the parts that can be controlled. Categories are a way of talking about hidden states.
1:37:29 ‘Category’ is a useful concept – gradients are often hard to compute – so compressing away gradients to focus on signals (categories) when needed
1:38:19 Scientific / decision tree thinking vs grounded common sense reasoning
1:40:00 Wisdom/common sense vs understanding. Common sense, tribal biases & group insanity. Self preservation, dunbar numbers
1:44:10 Is g factor & understanding two sides of the same coin? What is intelligence?
1:47:07 General intelligence as the result of control problems so general they require agents to become sentient
1:47:47 Solving the Turing test: asking the AI to explain intelligence. If response is an intelligible & testable implementation plan then it passes?
1:49:18 The term ‘general intelligence’ inherits it’s essence from behavioral psychology; a behaviorist black box approach to measuring capability
1:52:15 How we perceive color – natural synesthesia & induced synesthesia
1:56:37 The g factor vs understanding
1:59:24 Understanding as a mechanism to achieve goals
2:01:42 The end of science?
2:03:54 Exciting currently untestable theories/ideas (that may be testable by science once we develop the precise enough instruments). Can fundamental physics be solved by computational physics?
2:07:14 Quantum computing. Deeper substrates of the universe that runs more efficiently than the particle level of the universe?
2:10:05 The Fermi paradox
2:12:19 Existence, death and identity construction

Exciting progress in Artificial Intelligence – Joscha Bach

Joscha Bach discusses progress made in AI so far, what’s missing in AI, and the conceptual progress needed to achieve the grand goals of AI.
Discussion points:
0:07 What is intelligence? Intelligence as the ability to be effective over a wide range of environments
0:37 Intelligence vs smartness – interesting models vs intelligent behavior
1:08 Models vs behaviors – i.e. Deepmind – solving goals over a wide range of environments
1:44 Starting from a blank slate – how does an AI see an Atari Game compared to a human? Pac Man analogy
3:31 Getting the narrative right as well as the details
3:54 Media fear mongering about AI
4:43 Progress in AI – how revolutionary are the ideas behind the AI that led to commercial success? There is a need for more conceptual progress in AI
5:04 Mental representations require probabilistic algorithms – to make further progress we probably need different means of functional approximation
5:33 Many of the new theories in AI are currently not deployed – we can assume a tremendous shift in every day use of technology in the future because of this
6:07 It’s an exciting time to be an AI researcher

 

Principles of Synthetic Intelligence - Joscha BachJoscha Bach, Ph.D. is an AI researcher who worked and published about cognitive architectures, mental representation, emotion, social modeling, and multi-agent systems. He earned his Ph.D. in cognitive science from the University of Osnabrück, Germany, and has built computational models of motivated decision making, perception, categorization, and concept-formation. He is especially interested in the philosophy of AI and in the augmentation of the human mind.

Joscha has taught computer science, AI, and cognitive science at the Humboldt-University of Berlin and the Institute for Cognitive Science at Osnabrück. His book “Principles of Synthetic Intelligence” (Oxford University Press) is available on amazon.

 

Ethical Progress, AI & the Ultimate Utility Function – Joscha Bach

Joscha Bach on ethical progress, and AI – it’s fascinating to think ‘What’s the ultimate utility function?’ – should we seek the answer in our evolved motivations?

Discussion points:
0:07 Future directions in ethical progress
1:13 Pain and suffering – concern for things we cannot regulate or change
1:50 Reward signals – we should only get them for things we can regulate
2:42 As soon as minds become mutable ethics dramatically changes – an artificial mind may be like a Zen master on steroids
2:53 The ultimate utility function – how can we maximize the neg-entropy in this universe?
3:29 Our evolved motives don’t align well to this ultimate utility function
4:10 Systems which only maximize what they can consume – humans are like yeast

 

Principles of Synthetic Intelligence - Joscha BachJoscha Bach, Ph.D. is an AI researcher who worked and published about cognitive architectures, mental representation, emotion, social modeling, and multi-agent systems. He earned his Ph.D. in cognitive science from the University of Osnabrück, Germany, and has built computational models of motivated decision making, perception, categorization, and concept-formation. He is especially interested in the philosophy of AI and in the augmentation of the human mind.

Joscha has taught computer science, AI, and cognitive science at the Humboldt-University of Berlin and the Institute for Cognitive Science at Osnabrück. His book “Principles of Synthetic Intelligence” (Oxford University Press) is available on amazon.

 

 

The Grand Challenge of Developing Friendly Artificial Intelligence – Joscha Bach

Joscha Bach discusses problems with achieving AI alignment, the current discourse around AI, and inefficiencies of human cognition & communication.

Discussion points:
0:08 The AI alignment problem
0:42 Asimov’s Laws: Problems with giving AI (rules) to follow – it’s a form of slavery
1:12 The current discourse around AI
2:52 Ethics – where do they come from?
3:27 Human constraints don’t apply to AI
4:12 Human communication problems vs AI – communication costs between minds is much larger than within minds
4:57 AI can change it’s preferences

Principles of Synthetic Intelligence - Joscha BachJoscha Bach, Ph.D. is an AI researcher who worked and published about cognitive architectures, mental representation, emotion, social modeling, and multi-agent systems. He earned his Ph.D. in cognitive science from the University of Osnabrück, Germany, and has built computational models of motivated decision making, perception, categorization, and concept-formation. He is especially interested in the philosophy of AI and in the augmentation of the human mind.

Joscha has taught computer science, AI, and cognitive science at the Humboldt-University of Berlin and the Institute for Cognitive Science at Osnabrück. His book “Principles of Synthetic Intelligence” (Oxford University Press) is available on amazon.

Cognitive Biases & In-Group Convergences – Joscha Bach

Joscha Bach discusses biases in group think.

Discussion points:
– In-group convergence: thinking in true & false vs right & wrong
– The group mind may be more stupid than the smartest individuals in the group

Principles of Synthetic Intelligence - Joscha BachJoscha Bach, Ph.D. is an AI researcher who worked and published about cognitive architectures, mental representation, emotion, social modeling, and multi-agent systems. He earned his Ph.D. in cognitive science from the University of Osnabrück, Germany, and has built computational models of motivated decision making, perception, categorization, and concept-formation. He is especially interested in the philosophy of AI and in the augmentation of the human mind.

Joscha has taught computer science, AI, and cognitive science at the Humboldt-University of Berlin and the Institute for Cognitive Science at Osnabrück. His book “Principles of Synthetic Intelligence” (Oxford University Press) is available on amazon.

AI, Consciousness, Science, Art & Understanding – Joscha Bach

Here Joscha Bach discusses consciousness, it’s relationship to qualia and whether an AI or a utility maximizer would do with it.

What is consciousness? “I think under certain circumstances being conscious is an important part of a mind; it’s a model of a model of a model basically. What it means is our mind (our new cortex) produces this dream that we take to be the world based on the sensory data – so it’s basically a hallucination that predicts what next hits your retina – that’s the world. Out there, we don’t know what this is.. The universe is some kind of weird pattern generator with some quantum properties. And this pattern generator throws patterns at us, and we try to find regularity in them – and the hidden layers of this neural network amount to latent variables that are colors people sounds ideas and so on.. And this is the world that we subjectively inhabit – that’s the world that we find meaningful.”

… “I find theories [about consciousness] that make you feel good very suspicious. If there is something that is like my preferred outcome for emotional reasons, I should be realising that I have a confirmation bias towards this – and that truth is a very brutal vector”..

OUTLINE:
0:07 Consciousness and it’s importance
0:47 Phenomenal content
1:43 Consciousness and attention
2:30 When AI becomes conscious
2:57 Mary’s Room – the Knowledge Argument, art, science & understanding
4:07 What is understanding? What is truth?
4:49 What interests an artist? Art as a communicative exercise
5:48 Thomas Nagel: What is it like to be a bat?
6:19 Feel good theories
7:01 Raw feels or no? Why did nature endow us with raw feels?
8:29 What is qualia, and is it important?
9:49 Insight addiction & the aesthetics of information
10:52 Would a utility maximizer care about qualia?

BIO:
Principles of Synthetic Intelligence - Joscha BachJoscha Bach, Ph.D. is an AI researcher who worked and published about cognitive architectures, mental representation, emotion, social modeling, and multi-agent systems. He earned his Ph.D. in cognitive science from the University of Osnabrück, Germany, and has built computational models of motivated decision making, perception, categorization, and concept-formation. He is especially interested in the philosophy of AI and in the augmentation of the human mind.

Joscha has taught computer science, AI, and cognitive science at the Humboldt-University of Berlin and the Institute for Cognitive Science at Osnabrück. His book “Principles of Synthetic Intelligence” (Oxford University Press) is available on amazon.

Professor Peter Doherty – COVID19 Pandemic: Research & Action

Fascinating interview with Nobel Laureate Professor Peter Doherty on the COVID-19 pandemic, the nature of COVID-19, where it came from, it’s similarities to influenza other coronaviruses (i.e. SARS, MERS), how infectivity works, what we as citizens can do to stay safe and help minimise the burden on our health systems, achieving rapid responses to pandemics, a strategic infection strategy (variolation) in lieu of an actual vaccination, rejuvenating the thymus to help boost our immunity as we age, computer modelling of disease, and what we can hope to have learned from this ordeal after the pandemic is over.

Audio:

Youtube (video choppy, audio fine):

Peter’s book ‘Pandemics: What everyone needs to know’ can be found at Dymocks and Amazon.

 

Biography

Peter Charles Doherty, AC FRS FMedSci is an Australian veterinary surgeon and researcher in the field of medicine. He received the Albert Lasker Award for Basic Medical Research in 1995, the Nobel Prize in Physiology or Medicine jointly with Rolf M. Zinkernagel in 1996 and was named Australian of the Year in 1997. In the Australia Day Honours of 1997, he was named a Companion of the Order of Australia for his work with Zinkernagel. He is also a National Trust Australian Living Treasure. In 2009 as part of the Q150 celebrations, Doherty’s immune system research was announced as one of the Q150 Icons of Queensland for its role as an iconic “innovation and invention”.

https://en.wikipedia.org/wiki/Peter_C._Doherty

https://www.doherty.edu.au
https://www.nobelprize.org/prizes/medicine/1996/doherty/biographical/

#COVID_19 #Coronavirus #Pandemics #COVID19

Posthumanism – Pramod Nayar

Interview with Pramod K. Nayar on #posthumanism ‘as both a material condition and a developing philosophical-ethical project in the age of cloning, gene engineering, organ transplants and implants’. The book ‘Posthumanism’ by Pramod Nayar: https://amzn.to/2OQEA8z Rise of the posthumanities article: https://bit.ly/32Q67Pm
This time, I decided trying to itemize the interview so you can find sections via the time signature links:
0:00 Intro / What got Pramod interested in posthuman studies?
04:16 Defining the terms – what is posthumanism? Cultural framing of natural vs unnatural. Posthumanism is not just bodily or mental enhancement, but involves changing the relationship between humans, non-human lifeforms, technology and non-living matter. Displacement of anthropocentrism. 
08:01 Anthropocentric biases inherited from enlightenment humanist thinking and human exceptionalism. The formation of the transhumanist declaration with part of it focusing on the human with point 7 of the declaration focusing on the well-being of all sentience. The important question of empathy – not limiting it to the human species. The issue of empathy being a good lunching pad for further conversations between the transhumanists and the posthumanists. https://humanityplus.org/philosophy/t… 
11:10 Difficulties in getting everyone to agree on cultural values. Is a utopian ideal posthumanist/transhumanist society possible? 
13:25 Collective societies, hive minds, borganisms. Distributed cognition, the extended mind hypothesis, cognitive assemblages, traditions of knowledge sharing. 
16:58 Does the humanities need some form of reconfiguration to shift it towards something beyond the human? Rejecting some of the value systems that enlightenment humanism claimed to be universal. Julian Savulescu’s work on moral enhancement 
20:58 Colonialism – what is it? 
21:57 Aspects of enlightenment humanism that the critical posthumanists don’t agree with. But some believe the poshumanists to be enlightenment haters that reject rationality – is this accurate? 
24:33 Trying to achieve agreement on shared human values – is vulnerability rather than dignity a usable concept that different groups can agree with? 
26:37 The idea of the monster – people’s fear of what they don’t understand. Thinking past disgust responses to new wearable technologies and more radical bodily enhancements. 
29:45 The future of posthuman morphology and posthuman rights – how might emerging means of upgrading our bodies / minds interfere with rights or help us re-evaluate rights? 
33:42 Personhood beyond the human
35:11 Should we uplift non-human animals? Animals as moral patients becoming moral actors through uplifting? Also once Superintelligent AI is developed, should it uplift us? The question of agency and aspiration – what are appropriate aspirations for different life forms? Species enhancement and Ian Hacking’s idea of ‘Making up people’ – classification and how people come to inhabit the identities that exist at various points in history, or in different environments. https://www.lrb.co.uk/the-paper/v28/n… 
38:10 Measuring happiness – David Pearce’s idea of eliminating suffering and increasing happiness through advanced technology. What does it mean to have welfare or to flourish? Should we institutionalise wellbeing, a gross domestic happiness, world happiness index? 
40:27 Anders Sandberg asks: Transhumanism and posthumanism often do not get along – transhumanism commonly wears its enlightenment roots on its sleeve, and posthumanism often spends more time criticising the current situation than suggesting an out of it. Yet there is no fundamental reason both perspectives could not simultaneously get what they want: a post-human posthumanist concept of humanity and its post-natural environment seem entirely possible. What is Nayar’s perspective on this win-win vision? 
44:14 The postmodern play of endless difference and relativism – what is the good and bad of postmodernism on posthumanist thinking? 
47:16 What does postmodernism have to offer both posthumanism and transhumanism? 
49:17 Thomas Kuhn’s idea of paradigm changes in science happening funeral by funeral. 
58:58 – How has the idea of the singularity influenced transhumanist and posthumanist thinking? Shift’s in perspectives to help us ask the right questions in science, engineering and ethics in order to achieve a better future society. 
1:01:55 – What AI is good and bad at today. Correlational thinking vs causative thinking. Filling the gaps as to what’s required to achieve ‘machine understanding’. 
1:03:26 – Influential literature on the idea of the posthuman – especially that which can help us think about difference and ‘the other’ (or the non-human) 

Denis Odinokov – Conquering Cross-Linking for Biomedical Longevity

In order to achieve biomedical longevity, the problem of cross-Linking of the extracellular matrix needs to be addressed. Cells are held together by special linking proteins. When too many cross-links form between cells in a tissue, the tissue can lose its elasticity and cause problems including arteriosclerosis, presbyopia and weakened skin texture. These are chemical bonds between structures that are part of the body, but not within a cell. In senescent people many of these become brittle and weak. Fixing cross-linking may prove more difficult than just removing it – as it may create a vacuum where more waste is pulled in to fill the void left behind. Though some research is being conducted, the problem deserves a lot more hands on deck – and far more funding.
Denis gives a technical explanation of why conquering cross-linking is important, and strategies for addressing this problem in this interview conducted at the Undoing Aging conference in Berlin 2019.

Introduction to Denis’ writing/research here – “The Impact of Extracellular Matrix Proteins Cross-linking on the Aging Process“.

Understanding the consequences of the formation of protein crosslinks requires more attention both from the scientific community and independent researchers who are passionate with regards to the extension of the human lifespan. By doing so, it allows us to level up the playing field where we can create and work on more serious and impactful solutions.

Also see GlycoSENSSENS proposes to further develop small-molecular drugs and enzymes to break links caused by sugar-bonding, known as advanced glycation endproducts, and other common forms of chemical linking.

 

Jim Mellon – Investing in the Age of Longevity

Interview with hugely successful investor Jim Mellon at the Undoing Aging conference in Berlin 2019!
We cover reasons why it’s a good time to invest in Anti-Aging and rejuvenation biotechnology today, the ethical reasons why we should, and effective advocacy: i.e. what one would say to a billionaire to convince them that investing in longevity medicine is a good thing to do now.
Jim raised over $150 Million for his venture Juvenescence recently!

Transcript

My name is Jim Mellon, and I’m the chairman of Juvenescence, which is a company involved in the science of longevity. It is relatively recently formed; it is about a year and a bit old, but we’ve raised a significant amount of funding – nearly $160 million now – in the last year to advance the cause of longevity science. By the end of this year, we’ll have made 18 investments. Most of them are subsidiary companies of ours, so we control those companies. We give both development and financial backing to the scientist-entrepreneurs and institutions that we collaborate with.

I am fortunate to have two partners who have broad experience in the biotech and healthcare area, in particular, Declan Doogan, who was the head of drug development at Pfizer for a long period, and then he became the CEO of Amarin, which, as you know, is a very successful biotech company with a nearly $10 billion market valuation today. About four years ago, the three of us started a company called Biohaven, which is now listed on the New York Stock Exchange and has a valuation of about $2.5 billion. The company has approval for a drug for migraine, which will be on the market in the US next year. There is a good team of veteran drug developers and business entrepreneurs who have come together to create this Juvenescence company, and we’re very, very excited about it. We’re the biggest investors in the company ourselves, on the same terms as other investors. We will take the company public in the first quarter of next year, barring market disasters, and probably on the US stock exchanges.

We’re interested in this field of longevity science and able to raise significant funding because we’ve been in biotech for quite a long period of time, together, and created a number of companies. It seemed to be a natural outgrowth of the great developments that have occurred in the last few years. The unveiling of the human genome identified aging pathways that can now be manipulated. For the first time ever, you and I are in the cohort that is able to be bioengineered to live a healthier and longer life. It is still in a very primitive stage; we’re in the internet dial-up era equivalent, but the science is advancing very quickly.

I always say that I wrote my first book on biotech seven years ago, it was called Cracking the Code, and since then, we’ve had CRISPR/Cas9, which didn’t exist seven years ago, we’ve had the cure for Hepatitis C, we’ve had artificial intelligence for the development of novel compounds. The latter of which is a key part of our strategy, as investors in In Silico Medicine, which I think you are familiar with. Then, of course, you have cancer immunotherapy, which didn’t exist seven years ago, and is now a $100 billion / year industry. So, what’s going to happen in the next seven years? We don’t know, but it’s going to be very, very good. If you want to regard it as a casino table, we’re covering all the markers that we can with the funds that we’ve raised. We hope to raise a substantial further amount on the initial public offering of the company in the first quarter of next year, and that will give us enough firepower to do five Phase 2 trials without partners so that we can get the maximum leverage on the products that we’re developing.

So far, we’ve invested in small molecules, which is the specialization of our team. For instance, we have a senolytic drug in development in that area. We’ve also invested in stem cells; we’re the largest investor in Mike West’s company, AgeX Therapeutics, which is now a public company in the US. We own about 46% of that company. Then, via Lygenesis, we’ve also got our first product going into patients in the first quarter of next year, sick patients in a phase II trial, for organ regeneration, regenerating the liver, using hepatocytes to seed lymph nodes to act as ectopic bioreactors to grow fully functioning liver tissue. The FDA has agreed to the protocol for doing that in sick patients, which is a remarkably fast path to demonstrating successful outcomes in that area. If that is successful, then we will look to regenerate other organs, in particular the thymus, which as you know is related to aging in a big way.

We’re moving very, very quickly. We’ve got great colleagues; Margaret Jackson from Pfizer is on our team. Howard Federoff, ex-Pfizer, is on our team. Annalisa Jenkins, who was head of drug development and research and development at Merck Serono, a very big drug company, is on our team. We’ve put it all together remarkably quickly, but we have experience in doing that, and so we’re full of confidence. This is a remarkable time to be alive, and I want to be alive for at least another 20 or 30 years beyond what would be considered to be my allotted life span. The same is the motivating factor for my cofounders, Declan Doogan and Greg Bailey.

Working to extend life is an ethical cause. No one can argue, successfully at least, that this isn’t a good thing to do. There are some people who say “well, it is for the haves and not for the have-nots” but that is rubbish, because, ultimately, all these drugs will become generally available, and some of them already are. Metformin, which, as you are aware, is a drug that has some anti-aging properties, costs essentially nothing. It is a generic drug. As antibiotics, ulcer drugs, and so forth were once expensive and are now very cheap, the same thing will happen to drugs for longevity. Gene therapy and stem cells are another matter, though, and they will probably be expensive things for some time to come. But, undoubtedly, the cost will come down for those as well.

The other people who argue against work on aging talk about overpopulation; if there are all these old people, will there be enough room on the planet. Well, the answer is, we’re already alive, so we’re not going to be adding to the population. You and I are already here. The big issue on population is how many children does each woman have around the world, and that figure is falling dramatically, to the point where we can see populations actually shrinking. Just as an example, if Japan doesn’t allow immigration, or doesn’t have a baby boom, its population will fall from 126 million today to 50 million by the year 2100. So both those arguments, the haves versus the have-nots, and the overpopulation concern, are nonsensical arguments. In my view, there is absolutely no reason why governments, institutions, the general population, and the voting population shouldn’t be pushing really hard to make this happen.

Regarding the aging of the existing population and how to cope with it, the main point made by Aubrey de Grey, and other eminent scientists as well, is that if you treat the top of the cascade of damage in aging, then you are going to treat the underlying diseases of aging that pharmaceutical companies are trying to address. But for those pharmaceutical companies, it is a whack-a-mole exercise, so if you get one disease and that is cured, then you’ll get another one, and they’ll have to cure that one. Ultimately, we become destabilized and we die, all of us. So, let’s try and treat aging as the central disease, and from that as the unitary disease, we’ll be treating the cascade that follows from that.

Some people say it is hubris to target aging, but I think that this is because until relatively recently, nothing worked. It has been an aspiration of human beings for millennia to find the fountain or elixir of youth, and nothing has worked. So, people are skeptical about the fact that it might be working now: why now rather than 20 years ago or 20 years in the future? But the fact is that it is now, and we need to seize the moment and rise to the challenge. We need much more funding to come into this area, and that funding will drive the science. We need many more advocates for this cause to come to the fore and tp spread the word, that this is going to be monumentally great for human beings.

In my own case, I’ve set up a charity with Andrew Scott, who wrote The 100 Year Life, and we do a Longevity Week in London. We did the first one last year, and we’re doing the next one in November of this year, to spread the word. This will have a big societal impact, on consumption, on the way in which we look at the trajectory of life, but it is also going to have a major impact on us as human beings. In the past, you’d have expected to live to about 85 or 90, the same with me, and now we’re very likely to live to 110 or 120, so let’s do it. Let’s make it happen. I think that all of us, yourself, myself, have relatives, dear friends, and acquaintances who are suffering the indignities of aging as it currently exists. We’d like to relieve that burden of suffering by extending the healthy span of life. The personal motivation is a very big factor. Here in Berlin, there are 300 or 400 people at this conference, and I imagine that all of them, beyond just the business or scientific side of things, have an altruistic motivation for this as well. More people need to do it, so get on to it!

The elevator pitch for high net worth people thinking about investing in this space is that, first of all, we’re at the front end of a huge upward curve. I said earlier on that this was like the internet dial-up phase of longevity biotech. If you’d invested in the internet in the very early days, you’d be more than a billionaire now; you’d be one of the richest people on the planet. We’re at that stage now, so the opportunity for investors is huge, but you could do both. You could invest in something like the SENS Research Foundation or the Buck Institute or one of those wonderful organizations that is trying to advance the cause, and at the same time invest in some of the companies that come out of those institutions. We’ve undertaken two joint ventures with the Buck Institute, and we’ve made a couple of investments as a result of introductions by the SENS Research Foundation, including the organ regeneration program. If you’re a sensible billionaire, you will be putting some of your funds to work in a combination of a charitable enterprise that drives the science and the businesses themselves that come out of those enterprises.

Many thanks to Leaf Science for doing the transcript!

Perhaps one of the most interesting companies in which Juvenescence has invested is Lygenesis, which is developing an approach to address liver failure by creating miniature livers to pick up the slack. Lygenesis is using a technique in which liver cells are delivered to lymph nodes, where they develop and grow into fully working liver tissue, albeit smaller than the organ they replace. If these organs are shown to perform all the functions of a working liver, they could potentially remove the need to replace damaged livers through transplants. Initial work in mice and pigs has been promising, and Lygenesis plans to move to phase 2 clinical trials in early 2020.