Exciting progress in Artificial Intelligence – Joscha Bach

Joscha Bach discusses progress made in AI so far, what’s missing in AI, and the conceptual progress needed to achieve the grand goals of AI.
Discussion points:
0:07 What is intelligence? Intelligence as the ability to be effective over a wide range of environments
0:37 Intelligence vs smartness – interesting models vs intelligent behavior
1:08 Models vs behaviors – i.e. Deepmind – solving goals over a wide range of environments
1:44 Starting from a blank slate – how does an AI see an Atari Game compared to a human? Pac Man analogy
3:31 Getting the narrative right as well as the details
3:54 Media fear mongering about AI
4:43 Progress in AI – how revolutionary are the ideas behind the AI that led to commercial success? There is a need for more conceptual progress in AI
5:04 Mental representations require probabilistic algorithms – to make further progress we probably need different means of functional approximation
5:33 Many of the new theories in AI are currently not deployed – we can assume a tremendous shift in every day use of technology in the future because of this
6:07 It’s an exciting time to be an AI researcher

 

Principles of Synthetic Intelligence - Joscha BachJoscha Bach, Ph.D. is an AI researcher who worked and published about cognitive architectures, mental representation, emotion, social modeling, and multi-agent systems. He earned his Ph.D. in cognitive science from the University of Osnabrück, Germany, and has built computational models of motivated decision making, perception, categorization, and concept-formation. He is especially interested in the philosophy of AI and in the augmentation of the human mind.

Joscha has taught computer science, AI, and cognitive science at the Humboldt-University of Berlin and the Institute for Cognitive Science at Osnabrück. His book “Principles of Synthetic Intelligence” (Oxford University Press) is available on amazon.

 

Ethical Progress, AI & the Ultimate Utility Function – Joscha Bach

Joscha Bach on ethical progress, and AI – it’s fascinating to think ‘What’s the ultimate utility function?’ – should we seek the answer in our evolved motivations?

Discussion points:
0:07 Future directions in ethical progress
1:13 Pain and suffering – concern for things we cannot regulate or change
1:50 Reward signals – we should only get them for things we can regulate
2:42 As soon as minds become mutable ethics dramatically changes – an artificial mind may be like a Zen master on steroids
2:53 The ultimate utility function – how can we maximize the neg-entropy in this universe?
3:29 Our evolved motives don’t align well to this ultimate utility function
4:10 Systems which only maximize what they can consume – humans are like yeast

 

Principles of Synthetic Intelligence - Joscha BachJoscha Bach, Ph.D. is an AI researcher who worked and published about cognitive architectures, mental representation, emotion, social modeling, and multi-agent systems. He earned his Ph.D. in cognitive science from the University of Osnabrück, Germany, and has built computational models of motivated decision making, perception, categorization, and concept-formation. He is especially interested in the philosophy of AI and in the augmentation of the human mind.

Joscha has taught computer science, AI, and cognitive science at the Humboldt-University of Berlin and the Institute for Cognitive Science at Osnabrück. His book “Principles of Synthetic Intelligence” (Oxford University Press) is available on amazon.

 

 

Cognitive Biases & In-Group Convergences – Joscha Bach

Joscha Bach discusses biases in group think.

Discussion points:
– In-group convergence: thinking in true & false vs right & wrong
– The group mind may be more stupid than the smartest individuals in the group

Principles of Synthetic Intelligence - Joscha BachJoscha Bach, Ph.D. is an AI researcher who worked and published about cognitive architectures, mental representation, emotion, social modeling, and multi-agent systems. He earned his Ph.D. in cognitive science from the University of Osnabrück, Germany, and has built computational models of motivated decision making, perception, categorization, and concept-formation. He is especially interested in the philosophy of AI and in the augmentation of the human mind.

Joscha has taught computer science, AI, and cognitive science at the Humboldt-University of Berlin and the Institute for Cognitive Science at Osnabrück. His book “Principles of Synthetic Intelligence” (Oxford University Press) is available on amazon.

AI, Consciousness, Science, Art & Understanding – Joscha Bach

Here Joscha Bach discusses consciousness, it’s relationship to qualia and whether an AI or a utility maximizer would do with it.

What is consciousness? “I think under certain circumstances being conscious is an important part of a mind; it’s a model of a model of a model basically. What it means is our mind (our new cortex) produces this dream that we take to be the world based on the sensory data – so it’s basically a hallucination that predicts what next hits your retina – that’s the world. Out there, we don’t know what this is.. The universe is some kind of weird pattern generator with some quantum properties. And this pattern generator throws patterns at us, and we try to find regularity in them – and the hidden layers of this neural network amount to latent variables that are colors people sounds ideas and so on.. And this is the world that we subjectively inhabit – that’s the world that we find meaningful.”

… “I find theories [about consciousness] that make you feel good very suspicious. If there is something that is like my preferred outcome for emotional reasons, I should be realising that I have a confirmation bias towards this – and that truth is a very brutal vector”..

OUTLINE:
0:07 Consciousness and it’s importance
0:47 Phenomenal content
1:43 Consciousness and attention
2:30 When AI becomes conscious
2:57 Mary’s Room – the Knowledge Argument, art, science & understanding
4:07 What is understanding? What is truth?
4:49 What interests an artist? Art as a communicative exercise
5:48 Thomas Nagel: What is it like to be a bat?
6:19 Feel good theories
7:01 Raw feels or no? Why did nature endow us with raw feels?
8:29 What is qualia, and is it important?
9:49 Insight addiction & the aesthetics of information
10:52 Would a utility maximizer care about qualia?

BIO:
Principles of Synthetic Intelligence - Joscha BachJoscha Bach, Ph.D. is an AI researcher who worked and published about cognitive architectures, mental representation, emotion, social modeling, and multi-agent systems. He earned his Ph.D. in cognitive science from the University of Osnabrück, Germany, and has built computational models of motivated decision making, perception, categorization, and concept-formation. He is especially interested in the philosophy of AI and in the augmentation of the human mind.

Joscha has taught computer science, AI, and cognitive science at the Humboldt-University of Berlin and the Institute for Cognitive Science at Osnabrück. His book “Principles of Synthetic Intelligence” (Oxford University Press) is available on amazon.

Gero, Singapore AI startup bags $2.2m to create a drug that helps extend human life

Congrats to Gero for the $2.2m of funding to create a drug that helps extend human life!

I did two interviews with Gero in 2019 at Undoing Aging – here, with Peter Fedichev on Quantifying Aging in Large Scale Human Studies:

And here with Ksenia Tsvetkova on Data Driven Longevity:

Doris Yu at Tech In Asia said:

The company observed that as population growth slows down, the average lifespan increases. For example, there will only be 250 million people older than 65 by the end of the decade in China. Countries like Singapore, meanwhile, are not able to attract enough migrants to help offset the aging population.

Gero then wants to provide a medical solution to help extend healthspan as well as improve the overall well-being and productivity of its future customers.

It’s trying to do so by collecting medical and genetic data via a repository of biological samples and creating a database of blood samples collected throughout the last 15 years of patients’ lives. Its proprietary AI platform was able to determine a type of protein that could help with rejuvenation if blocked or removed.

What problem is it solving? “Aging is the most important single risk factor behind the incidence of chronic diseases and death. […] We are ready to slow down – if not reverse – aging with experimental therapies,” Peter Fedichev, co-founder and CEO of Gero, told Tech in Asia.

Explorebit.io wrote:

Gero, a Singapore-based company that develops new drugs for ageing and other complicated disorders using its proprietary developed artificial intelligence (AI) platform, secured $2.2m in Series A funding.

The round, which brought total capital raised since founding to over $7.5m, was led by Bulba Ventures with participation from previous investors and serial entrepreneurs in the fields of pharmaceuticals, IT, and AI. The co-founder of Bulba Ventures Yury Melnichek joined Gero’s Board of Directors. The company will use the funds to further develop its platform.

Led by founder Peter Fedichev, Gero provides an AI-based platform for analyzing clinical and genetic data to identify treatments for some of the most complicated diseases, such as chronic aging-related diseases, mental disorders, and others. The company’s experts used large datasets of medical and genetic information from hundreds of thousands of people acquired via biobanks and created a proprietary database of blood samples collected throughout the last 15 years of the patients’ lives.

Using this data, the platform determined the protein that circulates in people’s blood whose removal or blockage should lead to rejuvenation. Subsequent experiments at National University of Singapore involved aged animals and demonstrated mortality delay (life-extension) and functional improvements after a single experimental treatment. In the future, this new drug could enable patients to recover after a stroke and could help cancer patients in their fight against accelerated ageing resulting from chemotherapy.

The platform is currently also being utilized to develop drugs in other areas: for example, the group’s efforts to find potential therapies for COVID-19, including those that could reduce mortality from complications related to ageing, has already attracted a great deal of attention from large pharmaceutical companies and leading global media organizations.

How science fails

There is a really interesting Aeon article on what bad science, and how it fails.

What is Bad Science?
According to Imre Lakatosh, science degenerates unless it is both theoretically and experimentally progressive. Can Lakatosh’s ‘scientific programme’ approach, which incorporates merits of both Khunian and Popperian ideas, help solve this problem?

Is our current research tradition adequate and effective enough to solve seemingly intractable scientific problems in a timely manner (i.e. in foundational theoretical physics or climate science)?
Ideas are cheap, but backing them up with sound hypotheses (main and auxiliary) predicting novel stuff and experimental evidence aimed at confirming this stuff _is expensive_ given time/resource constraints means that among other things an ideal experimental progressiveness is sometimes not achievable.

A scientific programme is considered ‘degenerating’ if:
1) it’s theoretically degenerating because it doesn’t predict novel facts (it just accommodates existing facts); no new forecasts
OR
2) it’s experimentally degenerating because none of the predicted novel facts can be tested (i.e. string theory)

Lakatosh’s ideas (that good science is both theoretically and experimentally progressive) may serve as groundwork for further maturing what it means to ‘do science’ where an existing dominant programme is no longer able to respond to accumulating anomalies – which was the reason why Kuhn wrote about changing scientific paradigms – but unlike Kuhn, Lakatos believes that a ‘gestalt-switch’ or scientific revolution should be driven by rationality rather than mob psychology.
Though a scientific programme which looks like it is degenerating may be just around the corner from a breakthrough…

For anyone seeking an unambiguously definitive demarcation criterion, this is a death-knell. On the one hand, scientists doggedly pursuing a degenerating research programme are guilty of an irrational commitment to bad science. But, on the other hand, these same scientists can legitimately argue that they’re behaving quite rationally, as their research programme ‘might still be true’, and salvation might lie just around the next corner (which, in the string theory programme, is typically represented by the particle collider that has yet to be built). Lakatos’s methodology doesn’t explicitly negate this argument, and there is likely no rationale that can.

Lakatos argued that it is up to individual scientists (or their institutions) to exercise some intellectual honesty, to own up to their own degenerating programmes’ shortcomings (or, at least, not ‘deny its poor public record’) and accept that they can’t rationally continue to flog a horse that appears, to all intents and purposes, to be quite dead. He accepted that: ‘It is perfectly rational to play a risky game: what is irrational is to deceive oneself about the risk.’ He was also pretty clear on the consequences for those indulging in such self-deception: ‘Editors of scientific journals should refuse to publish their papers … Research foundations, too, should refuse money.’

This article is totally worth a read…

https://aeon.co/essays/imre-lakatos-and-the-philosophy-of-bad-science

The Problem of Feral Cats

Feral cats kill about 1 million native animals per day in ecosystems which didn’t evolve to cope with cats.  How should we deal with the problem of feral cats? I hear a lot of ‘kill ’em all’ [1]. When in HK I noticed a lot of cats with one ear slightly smaller.. then found out that there were vans of vets capturing then de-sexing cats, marking them by taking a small slice of their ear, then releasing them. I thought that this was a compassionate approach, though may have cost more to do than just killing the cats.
This issue raises some interesting fundamental questions that humans often seem all to ready to answer with our amygdalas – it’s hard not to, it’s in our nature.  Though we do realize that us humans have had the largest impact on the ecology – and that it’s our own fault feral cats are here.  Despite it being humanity’s fault, the feral cat problem still remains. As long as there are a population of human pet owners won’t be 100% responsible for their cats, the feral cat problem will always exist.  A foolproof morality pill for humans and their pets seems quite far off – so in the mean time, we can’t depend on changing cat and human behaviour.

To date, feral cat eradication has only been successful on small islands – not on mainlands.  Surprisingly, it was accidentally found that low-level culling feral cats may increase their numbers based on observation in the forests of southern tasmania – “Increases in minimum numbers of cats known to be alive ranged from 75% to 211% during the culling period, compared with pre- and post-cull estimates, and probably occurred due to influxes of new individuals after dominant resident cats were removed.”

A study by CSIRO, which advocates considering researching and eventually using gene drives, says:

So far, traditional controls like baiting have not been effective on cats. In fact, the only way land managers have been able to stop cats from getting at our native animals is to construct cat-proof fencing around reserve areas, like those managed by Australian Wildlife Conservancy, then removing all the cats inside and allowing native mammals to flourish. This isn’t considered sustainable in the long term and, outside the fences, this perfect storm of predatory behaviour has continued to darken our biodiversity landscape.

The benefit of gene drives is that it can reduce and even eventually eradicate feral cat populations without killing the cats, but by essentially making it so feral cat offspring all end up male.

…there is hope on the horizon—gene drive technology. Essentially, gene drives are systems that can bias genetic inheritance via sexual reproduction and allow a particular genetic trait to be passed on from a parent organism to all offspring, and therefore the ability of that trait to disperse through a population is greatly enhanced… Using this type of genetic modification (GM) technology, it becomes theoretically possible to introduce cats into the feral populations to produce only male offspring. Over time, the population would die out due to lack of breeding partners.

Research into gene-drives and broader genetics can help solve a lot of other related problems.  Firstly I don’t assume we should  just assume that future tech will be able to solve all our problems, though if we sequenced as much species as possible and kept highly accurate and articulate records of ecosystems, this may help to rejuvenate or even revive species and their habitats at some time in the future – and genetics (esp gene-drives and CRISPR) research has proven to be very powerful – so from the point of view of wildlife / ecosystem preservation, a catalog and revive strategy is surely worthy of serious consideration. One might see it as restoration ecology + time travel.

There are a myriad of considerations but what are the fundamental, ultimate goals of mitigating the negative impacts of feral cats? Two goals may conflict – species preservation and overall suffering reduction. Should we see single goals as totalizing narratives – in practice perhaps not – but great fodder for thought experiments:
1) Species preservation: If this is the ultimate goal, acknowledging that the most upstream cause of feral cats are humans, we could impose staggeringly huge fines on people for not being responsible pet owners – and use that to fund studies and programs for ecosystem preservation – given current technology we can’t resurrect long gone species, though we can try to more deeply catalog species genomes and ecosystem configurations with the hope that one day once we solve human irrationality, perhaps we can then be in a position to choose to engage in efficient comprehensive re-wilding programs – incidentally we may wish to curb the population of pet lovers (for the record, that’s a joke :))
2) If Suffering reduction is the ultimate goal then that really changes things up – there is a ridiculous amount of suffering in the wild, as both David Pearce and Richard Dawkins show. Should we eradicate nature? I’ll stop there.

The total amount of suffering per year in the natural world is beyond all decent contemplation. During the minute that it takes me to compose this sentence, thousands of animals are being eaten alive, many others are running for their lives, whimpering with fear, others are slowly being devoured from within by rasping parasites, thousands of all kinds are dying of starvation, thirst, and disease. It must be so. If there ever is a time of plenty, this very fact will automatically lead to an increase in the population until the natural state of starvation and misery is restored. In a universe of electrons and selfish genes, blind physical forces and genetic replication, some people are going to get hurt, other people are going to get lucky, and you won’t find any rhyme or reason in it, nor any justice. The universe that we observe has precisely the properties we should expect if there is, at bottom, no design, no purpose, no evil, no good, nothing but pitiless indifference.Richard Dawkins, River Out of Eden: A Darwinian View of Life

Interview with David Pearce on ‘Wild animal suffering – Ethics of Wildlife Management and Conservation Biology’

David Pearce advocates for a benign compassionate stewardship of nature, alleviating suffering in the near and long term futures using high technology (assuming that ultimately the whole world will be computationally accessible to the micromanagement needed for benign hyper-stewardship of nature).

https://www.spca.org.hk/en/animal-birth-control/cat-colony-care-programme

[1] A discussion in a FB group ‘Australian Freethinkers’ – the OP was “What do you think about the feral cats in Australia?

I hear farmers shoot them. They are huge.

They can’t be doing anything good for small rare marsupials.

Should we be aiming to kill them all?”

Event: Stelarc – Contingent & Contestable Futures

STELARC – CONTINGENT AND CONTESTABLE FUTURES: DIGITAL NOISE, GLITCHES & CONTAMINATIONS

Synopsis: In the age of the chimera, uncertainty and ambivalence generate unexpected anxieties. The dead, the near-dead, the brain dead, the yet to be born, the partially living and synthetic life all now share a material and proximal existence, with other living bodies, microbial life, operational machines and executable and viral code. Digital objects proliferate, contaminating the human biome. Bodies become end effectors for other bodies in other places and for machines elsewhere, generating interactive loops and recursive choreographies. There was always a ghost in the machine, but not as a vital force that animates but rather as a fading attestation of the human.

Agenda

5.45 – Meet, great, and eat.. pub food – it’s actually not bad! Feel free to come early to take advantage of the $8.50 pints from 4.00-6.00.
6.40 – Adam Ford – Introduction
6.50 – Stelarc – Talk: Contingent & Contestable Futures

Where: The Clyde Hotel (upstairs in function room) 385 Cardigan St, Carlton VIC 3053 – bring your appetite, there is a good menu: https://www.theclydehotel.com.au
When: Thursday July 25th – 5.45 onwards, though a few of us will be there earlier (say 5pm) to take advantage of the $8.50 pints (from 4pm onwards – if you say you are with STF you will get $8.50 pints all night)

*p.s. the event will likely be videoed – if you have any issues with being seen or heard on YouTube, please let us know.

BRIEF BIOGRAPHICAL NOTES

Stelarc experiments with alternative anatomical architectures. His performances incorporate Prosthetics, Robotics, VR and Biotechnology. He is presently surgically constructing and augmenting an ear on his arm. In 1996 he was made an Honorary Professor of Art and Robotics, Carnegie Mellon University and in 2002 was awarded an Honorary Doctorate of Laws by Monash University. In 2010 he was awarded the Ars Electronica Hybrid Arts Prize. In 2015 he received the Australia Council’s Emerging and Experimental Arts Award. In 2016 he was awarded an Honorary Doctorate from the Ionian University, Corfu. His artwork is represented by Scott Livesey Galleries,
Melbourne. www.stelarc.org

Judith Campisi – Senolytics for Healthy Longevity

I had the absolute privilege of interviewing Judith Campisi at the Undoing Aging conference in Berlin.  She was so sweet and kind – it was really a pleasure to spend time with her discussing senolytics, regenerative medicine, and the anti-aging movement.

 

 

 

Judith Campisi was humble, open minded, and careful not to overstate the importance of senolytics, and rejuvenation therapy in general.  Though she really is someone who has made an absolutely huge impact in anti-aging research.  I couldn’t have said it better than Reason at Fight Aging!

As one of the authors of the initial SENS position paper, published many years ago now, Judith Campisi is one of the small number of people who is able to say that she was right all along about the value of targeted removal of senescent cells, and that it would prove to be a viable approach to the treatment of aging as a medical condition. Now that the rest of the research community has been convinced of this point – the evidence from animal studies really is robust and overwhelming – the senescent cell clearance therapies known as senolytics are shaping up to be the first legitimate, real, working, widely available form of rejuvenation therapy.

Cognitive Biases & In-Group Convergences with Joscha Bach

True & false vs right & wrong – People converge their views to set of rights and wrongs relative to in-group biases in their peer group.
As a survival mechanism, convergence in groups is sometimes more healthy than being right – so one should optimize for convergence sometimes even at the cost of getting stuff wrong – so humans probably have an evolutionary propensity to favor convergence over truth.
However by optimizing for convergence may result in the group mind being more stupid than the smartest people in the group.

 

 
Joscha highlights the controversy of Yonatan Zunger being fired for sending out an email about biological differences between men and women effecting abilities as engineers – where Zunger’s arguments may be correct – now regardless of what the facts are about how biological differences effect differences in ability between men & women, google fired him because they thought supporting these arguments would make for a worse social environment.

This sort of thing leads to an interesting difference in discourse, where:
* ‘nerds’ tend to focus on ‘content‘, on imparting ideas and facts where everyone can judge these autonomously and form their own opinions – in view that in order to craft the best solutions we need to have the best facts
* most people the purpose of communication is ‘coordination‘ between individuals and groups (society, nations etc) – where the value on a ‘fact’ is it’s effect on the coordination between people

So is Google’s response to the memo controversy about getting the facts right, or about how Google at this point should be organised?

What’s also really interesting is that different types of people read this ‘memo’ very differently – making it very difficult to form agreement about the content of this memo – how can one agree on whats valuable about communication – whether it’s more about imparting ideas and facts or whether it’s more about coordination?

More recently there has been a lot of talk about #FakeNews – where it’s very difficult to get people to agree to things that are not in their own interests – and including, as Joshca points out, the idea that truth matters.

Joscha Bach, Ph.D. is an AI researcher who worked and published about cognitive architectures, mental representation, emotion, social modeling, and multi-agent systems. He earned his Ph.D. in cognitive science from the University of Osnabrück, Germany, and has built computational models of motivated decision making, perception, categorization, and concept-formation. He is especially interested in the philosophy of AI and in the augmentation of the human mind.

Discussion points:
– In-group convergence: thinking in true & false vs right & wrong
– The group mind may be more stupid than the smartest individuals in the group