Aubrey de Grey – SENS Therapy Delivery

In this interview Aubrey discusses some of the various approaches that SENS therapy will likely be delivered. Mostly covering gene therapy. Also see this interview where Aubrey de Grey discusses using artificial organs and synthetic devices as replacement parts to aid in defeating aging.

Ex-Vivo Gene Therapy

Ex Vivo Gene Therapy

ref: yolasite.com (click for larger image)

Some things that people are already looking at, for instance introducing new blood stem cells into AIDS patients that contain an AIDS resistant gene named CCR5. A very small portion of people have a natural variant of that gene, called Delta32, which confers very strong resistance to HIV. If you could give this variant of CCR5 this could be a very powerful therapy – luckily the cells that need to have that variant are blood cells – blood cells come from stem cells – so bone marrow transplants with this appropriately modified version of this gene would be very powerful, and that is already being worked on.
There may be very many other cases of inherited diseases (especially) which could be modified and indeed perhaps cured by using genetic modification of stem cells for stem cell therapy.
Now in the case of ageing, this may also be a good way of delivering certain of the SENS therapies – the one that’s most obvious is LysoSENS – the Lyso Enhancement idea for getting rid of the molecular garbage inside of cells – because here we have to introduce new enzymes into these cells (enzymes that are not encoded into the normal human genome) and in some cases it may make sense to actually introduce the enzymes by injecting the enzymes into the circulation in the same way we already treat certain inherited diseases of Lysosomal function (called Lysosomal storage diseases). But in other cases it may be actually be preferable to make genetic modifications to stem cells so that the blood cells or the other cells that are created from those stem cells are able to have that genetic modification and thereby not to accumulate the molecular garbage that we are talking about – perhaps even to eliminate the molecular garbage that had already accumulated.

Somatic Gene Therapy

In_vivo_gene_therapy

ref: yolasite.com (click for larger image)

Some of what were going to need to do in genetic modification of people so as to implement SENS will not, or almost certain not be able to be implemented using ex-vivo gene therapy – the genetic modification of cells outside the body that are then introduced into the body. Some of it is going to have to be done by genetically modifying cells in the body itself. That is what is called ‘Somatic Gene Therapy’ – the way it’s normally done is by engineering a virus contain the engineered DNA that we are interested in and not to contain the DNA that the virus naturally has that makes it bad for us*. And of course gene therapy as an idea has been around for quite a long time – and in fact the first clinical trials of gene therapy happened about 20 years ago. But it’s had a pretty rocky ride because in fact there is an awful lot of risks involved in gene therapy and it doesn’t really work very well yet.
There are certain diseases with a very low hit rate – that is getting a suitable genetic modification to a very small number of cells is enough to be able to actually cure the disease. But in most cases you have to hit quite a lot of cells and we really just don’t know how to do that yet. We at SENS foundation are very interested in helping to address that problem and there is one particular approach to improving very substantially the ability to very safely introduce new DNA into a lot of cells into the body which we are just starting a project to explore. **

* Note this interview was done shortly before CRISPR was discovered.
** This project is called?? Note I will follow up with Aubrey de Grey on this point – but my feeling is that CRISPR may have solved the problem, at least partially

Adeno-Associated Virus

Adeno-associated_virus_serotype_AAV2One of the biggest dangers in somatic gene therapy and also it’s a danger for ex-vivo gene therapy (where you genetically modify stem cells and then you introduce them) is that on occasion the engineered gene may go into the genome in the wrong place – into a place that causes damage in the form of disrupting the DNA that was already there – in a way that you don’t want.  In general that disruption is harmless, but very occasionally it may not be harmless – it may actually make the cell cancerous (and there have been genuine cases of this in clinical trials for particular gene therapies).  So, people are very interested in ways to stop that from happening.  The most obvious way to stop that from happening is to develop a gene therapy vector (a type of virus) that preferentially goes into a particular harmless place in the genome and not go into any of the potentially harmful places – now it turns out that there are some viruses that naturally do this – there is something called AAV (Adeno-Associated Virus) which preferentially go into one particular site of chromosome 19 and people have been very interested in that virus for quite a long time for exactly that reason.  However it turns out that its quite complicated to make that really work and the hit-rate is not good enough – it still has random integration at an unacceptably high level.   So people will want to find other ways to go about this – and there really are lot’s of very creative technologies out there that are being explored to do exactly that.  I’m very optimistic that quite soon we will have gene therapy that very robustly does not disrupt DNA that it would be dangerous to disrupt.

RNA Interference

I believe there are other types of manipulation of gene expression other than gene therapy are also potentially valuable in treatment of ageing and of course medicine in general.  A lot of interest these days is in RNA Interference (RNAi) which is a method for inhibiting expression of particular proteins by introducing short RNA molecules that interfere with that process.  And that’s got a lot of potential – people are looking into it in a variety of different applications – one area that people have been trying to look into it for is cancer.  So see if one can close down cells that are over -expressing when they shouldn’t be over-expressing (for example).  Personally I’m not very optimistic about this application for cancer because it’s just too easy for cancers to mutate into a form that makes the RNAi in-effective – so the short RNA does not work anymore.  But in other applications it might be useful.

Neuro-Regeneration

So the brain is of course arguably the most essential to repair from the damage of ageing – there’s not much point in rebuilding the rest of the body if you are demented – how hard is that?  In particular is it significantly harder (to repair) than the rest of the body?  I believe it’s not significantly harder than the rest of the body – ultimately the brain is certainly vastly more complicated than any other organ, and we are vastly more ignorant about how it works than we are about any other organ – but the thing about SENS, the thing about the whole preventative maintenance approach to combating ageing is that we don’t need to understand how the organ works in order to restore its function or we need to do is understand what its made of, and more specifically how what it’s made of changes throughout life so that we can reverse these changes – repair those changes – and put structure and composition of the organ back to how it was at an earlier stage in early adulthood and thereby restore its function irrespective of our ignorance of how that function arises from that structure – that’s just as true for the brain and any other organ.  So one example of this is the fact that brain cells (neurons) don’t divide, and in most cases don’t have per-cursor cells that don’t divide either – there are a couple of areas of the brain that do exhibit the creation of new neurons throughout adulthood – the rest of the brain doesn’t luckily the rest of the brain exhibits a very very very slow rate of cell death – so it’s not really a problem – and the problems we need to fix are the problems of accumulation of garbage inside neurons for example, or outside of neurons that make those neurons not work so well even while those neurons are still alive.

 

Aubrey-de-Grey---SNES-Therapy-Delivery


Aubrey de Grey is the chief science officer of the SENS Research Foundation, which is a 501(c)(3) public charity that is transforming the way the world researches and treats age-related disease.

The research SENS funds at universities around the world and at SENS own Research Center uses regenerative medicine to repair the damage underlying the diseases of aging. The goal of SENS is to help build the industry that will cure these diseases.


Aubrey de Grey was interviewed by Adam Ford in 2012.

Here is a playlist of all the interview sections:

Scientific and Engineering language within a General Theory of Discourse – Rohan McLeod

Rohan Mcleod Green headshot
We have heard many different notions of what the words: science, philosophy and the term ‘philosophy of science’ mean. No doubt if we consult three different dictionaries we will discover three more., and if we consult Wikipedia yet another.
I would hope that those of you more predisposed to enquiry than debate ;even those with with a science and engineering background, like myself; might ask them selves how is it that scientific and engineering discourse is so clear and philosophy (whatever that may turn out to mean) so plagued with with ambiguity ?

Here is a theory’ which for lack of a better title I have described as a “General Theory of Discourse” followed by an attempt to contextualise scientific and
engineering language within it. There is no attempt here to discriminate between ‘technology’ and ‘engineering’, which is here intended as:
-the whole process of invention, design, construction and development of material and intellectual artefacts.

General Theory of Discourse
[I] As a subject matter becomes more ‘ difficult’; there is a tendency for one’s words to
miss-communicate the intended meaning to one’s listener or reader, due to either:
– obscurity, the word conveys no meaning;
-ambiguity, the word conveys many unintended meanings or
– is misleading, the word conveys one meaning, but not that intended.
[II] A partial list of the ways a subject matter can be more difficult would seem to include:
– complex versus simple;
-general versus particular
– subtle versus obvious
– implicit versus explicit
– subjective versus objective
– what exists versus what should / should not be

So all other things being equal; it would be expected for example, that discussing the location of the local post-office should result in less miss-communication in the above sense than discussing some scientific, philosophical, metaphysical or mystical matter, (speculated order of increasing likelihood of miss-communication)

[III] But of course all other things are not equal; any two people will experience greater or lesser miss-communication, in the above sense depending on both the difficulty of the subject (as above) and what I will term their ‘degree of linguistic commonality’

It is such a common place, that we take it for granted, that if a speaker has only an English vocabulary and the listener only a French one; communication will be difficult or impossible. So the idea arises that there may be other matters about which there also needs to be agreement even though the requirement like French or English is optional ?

Perhaps there is an ordering of such agreements, so that one is prerequisite for the next ? Here is what seems like a partial sequence of such agreements

1/ Is it agreed that words will only be used literally and not metaphorically ? if so;
2/ Is it agreed that responsibility for disambiguation of words rests with speaker, listener
or somewhere in between ? if so;
3/ Is there agreement regarding what words are (ontologically) ?
eg. if they are symbols; what ‘is’ (ontologically) the referent of the symbol ?
if so;
4/ Is there agreement regarding the utility of definitions to the end of clarifying the meaning
of words ? if so;
eg Wittgenstein in Tractatus Logico-Philosophicus might not have agreed with this
if so;
5/ Is there agreement concerning the linguistic form of definitions ?
eg. Should definitions be:
concise, as in using a minimum number of words ?
precise, as in being as unambiguous as possible ?
exhaustive, as in including all intended usages and excluding all other ?
reductive , as in not using words more as or more complex than that being defined ?
if so;
6/ Is there agreement that the definition doesn’t merely describes an arbitrary category
eg.” It all depends how you define “X”;
if so;
7/ Is there agreement on whether words are not just a natural phenomena but also a
social artefact ;the purpose of which is to convey meaning ?
ie. with the implication that a dictionary definition is not an arbitrary construct;
but should be a hypothesis describing preferred usage within a given demographic;
with the further implication that objective ranking of dictionary definitions becomes
meaningful .
If so;
8/ Is there agreement that in a natural language the category so described is not
arbitrary, as in say a legal definition but that it is an attempt at ontological description ?

-as mentioned this seems like a partial list ; that is further criteria may become evident ;
similarly the ordering is tentative and may require adjustment

It is very important to emphasise:
– that the above is just one path through a binary tree of 2^8 = 256 possibilities , where
progress along each path is only indicative of reduced likelihood of miss-communication.
– that just because there is little likelihood of miss-communication does not mean there will
be substantial agreement between speaker and listener;
eg.I may have substantial reservations regarding the existence of angels but at least;
the theologian and myself; will be communicating;
eg. The positivist philosopher may have substantial reservations regarding the utility of
meditation but again she and the mystic will be communicating.

It is also contended the above path would be typical for speaker / listener pairs;  with a common background in science and / or engineering and whilst the subject matter
was limited to scientific and engineering matters. It becomes clear then why such communication is so void of semantic confusion; namely because objective falsification
has imposed very strict constraints on:
-what the desired linguistic form of definitions are considered to be ;
-what the definitions of common terms will be:
eg mass, length, time, energy…..etc.
In some ways the program of positivism and analytic philosophy can be seen as a hope  to eliminate the ambiguity and miss-communication so common in much Greek and
Continental Philosophy. This procrustian .approach seems to have the unfortunate collateral result of excluding most subjects of interest in philosophy; eg ethics, ideology, epistemology, ontology, metaphysics, mystical and spiritual experience

The Revolutions of Scientific Structure – Colin Hales

colin hales orange bg“The Revolutions of Scientific Structure” reveals an empirically measured discovery, by science, about the natural world that is the human scientist. The book’s analysis places science at the cusp of a major developmental transformation caused by science targeting the impossible: the science of consciousness, which was started in the late 1980s by a science practice that cannot, in principle, ever succeed. This impossible science must fail, not because it is malformed, but because it cannot deliver to engineers what is needed to build artificial consciousness.

The book formally reveals how fully expressed scientific behaviour actually has two faces, like the Roman god Janus. Currently we only use one face, the ‘Appearance-Aspect’ and it is measured and properly documented by the book for the first time. Where some scientists accidentally use the other, the two faces are shown to be confused as one. There are actually two fundamental kinds of ‘laws of nature’ that jointly account for the one underlying natural world. The recognition and addition of the second kind, the ‘Structure-Aspect’, is the book’s proposed transformation of science.

The upgraded framework is called ‘Dual Aspect Science’ and is posited as the adult form of science that had to wait for computers before it could emerge a fully formed butterfly from its millennial larval form that is single (appearance)-aspect science. Only ‘Structure-Aspect’ computation can scientifically reveal the principles underlying the nature of consciousness — in the form of the consciousness that is/underlies scientific observation. While this outcome ultimately affects all scientists, initially only neuroscience and physics are those that, together, have the responsibility for the empirical work needed for the introduction of Dual-Aspect science. This is not philosophy. This is empirical science.

More information on this title can be found at: http://www.worldscientific.com/worldscibooks/10.1142/9211#t=aboutBook .

Document of presentation available here:

Abstract: Logic and Rationality; Disagreement and Evidence – Greg Restall

gregrestall_1289488138_34The resurgence of fact talk in political and public discourse — primarily seen in the rise of so-called “fact-checking” websites—is welcome phenomenon, but what does it signify, and why should we welcome it? I’ll attempt to explain how care and attention to talk of facts and reasons can play a vital role in our public discourse, even in the midst of significant differences in matters of public policy or private opinion.
Greg Restall is Professor of Philosophy at the University of Melbourne. He received his Ph.D. from the University of Queensland in 1994, and has held positions at the Australian National University and Macquarie University, before moving to Melbourne in 2002. His research focuses on formal logic, philosophy of logic, metaphysics, and philosophy of language, and even some philosophy of religion. He has published over 80 papers in journals and collections, and is the author of three books, An Introduction to Substructural Logics (Routledge, 2000), Logic (Routledge, 2006), and Logical Pluralism (Oxford University Press, 2006; with Jc Beall). His research has been funded by the Australian Research Council, and he is a Fellow of the Australian Academy of the Humanities.

See the slides for the presentation here:

Philosophy of Science – What & Why?

Interview with John Wilkins:

John-Wilkins---Phil-Sci-IntroEvery so often, somebody will attack the worth, role or relevance of philosophy on the internets, as I have discussed before. Occasionally it will be a scientist, who usually conflates philosophy with theology. This is as bad as someone assuming that because I do some philosophy I must have the Meaning of Life (the answer is, variously, 12 year old Scotch, good chocolate, or dental hygiene).

But it raises an interesting question or two: what is the reason to do philosophy in relation to science? being the most obvious (and thus set up the context in which you can answer questions like: are there other ways to find truth than science?). So I thought I would briefly give my reasons for that.

When philosophy began around 500BCE, there was no distinction between science and philosophy, nor, for that matter, between religion and philosophy. Arguably, science began when the pre-Socratics started to ask what the natures of things were that made them behave as they did, and equally arguably the first actual empirical scientist was Aristotle (and, I suspect, his graduate students).

But a distinction between science and philosophy began with the separation between natural philosophy (roughly what we now call science) and moral philosophy, which dealt with things to do with human life and included what we should believe about the world, including moral, theological and metaphysical beliefs. The natural kind was involved in considering the natures or things. A lot gets packed into that simple word, nature: it literally means “in-born” (natus) and the Greek physikos means much the same. Of course, something can be in-born only if it is born that way (yes, folks, she’s playing on some old tropes here!), and most physical things aren’t born at all, but the idea was passed from living to nonliving things, and so natural philosophy was born. That way.

In the period after Francis Bacon, natural philosophy was something that depended crucially on observation, and so the Empiricists arose: Locke, Berkeley, Hobbes, and later Hume. That these names are famous in philosophy suggests something: philosophy does best when it is trying to elucidate science itself. And when William Whewell in 1833 coined the term scientist to denote those who sought scientia or knowledge, science had begun its separation from the rest of philosophy.

Or imperfectly, anyway. For a start the very best scientists of the day, including Babbage, Buckland and Whewell himself wrote philosophical tomes alongside theologians and philosophers. And the tradition continues until now, such as the recent book by Stephen Hawking in which he declares the philosophical enterprise is dead, a decidedly philosophical claim to make. Many scientists seem to find the doing of philosophy inevitable.

So why do I do philosophy of science? Simply because it is where the epistemic action is: science is where we do get knowledge, and I wish to understand how and why, and the limitations. All else flows from this for me. Others I know (and respect) do straight metaphysics and philosophy of language, but I do not. It only has a bite if it gives some clarity to science. I think this is also true of metaphysics, ethics and such matters as philosophy of religion.

Now there are those who think that science effectively exhausts our knowledge-gathering. This, too, is a philosophical position, which has to be defended, and elaborated (thus causing more philosophy to be done). I don’t object to that view, but for me, it is better to be positive (say that science gives us knowledge even if other activities may do) than to be negative (deny that anything but science gives us knowledge). It may be that we get to the latter position after considering the former; if so, that would be a philosophical result.

I am fascinated by science. It allows us to do things no ancient Greek (or West Semitic) thinker would have been even able to conceive of. It means we make fewer mistakes. Philosophy is, and ought only to be, in the service of knowledge (I’m sure somebody has said that before). Science is a good first approximation of that.

But scientists who reject philosophy, as if that very rejection is not a philosophical stance (probably taken unreflectively or on the basis of half-digested emotive appeals), them I have no time for as philosophers. They should perhaps stick to their last and not make fools of themselves.

Not, of course, that every philosopher is worth reading. Sturgeon’s Law (90% of everything is crap) applies here too. But lest any scientist get too smug, recall that 99% of all scientific papers are never cited again many scientific papers are uncited . In philosophy, that ratio is perhaps lower… probably almost down to the Sturgeon limit.

See this post by John Wilkins at Evolving Thoughts: http://evolvingthoughts.net/2011/07/why-do-philosophy-of-science.

Panel: The Demarcation Problem – What is Science, and What Isn’t Science?

The demarcation problem in the philosophy of science is about how to distinguish between science and nonscience, including between science, pseudoscience, other activities, and beliefs. The debate continues after over a century of dialogue among philosophers of science and scientists in various fields, and despite broad agreement on the basics of scientific method.

For Popper, the distinguishing characteristic of science is that it seeks to falsify, not to confirm, its hypotheses.  Do you agree with Popper?

Will the specter of metaphysics continue to haunt the hunter on the quest for a sound a demarcation criterion?

Can we distinguish, ina principled way,between sciences and pseudosciences?

 

Life, Knowledge and Natural Selection – How Life (Scientifically) Designs its Future – Bill Hall

Bill HallStudies of the nature of life, evolutionary epistemology, anthropology and history of technology leads me reluctantly to the conclusion that Moore’s Law is taking us towards some kind of post-human singularity. The presentation explores fundamental aspects of life and knowledge, based on a fusion of Karl Popper’s (1972) evolutionary epistemology and Maturana and Varela’s (1980) autopoietic theory of life to show that knowledge and life must co-evolve, and that this co-evolution leads to exponential growth of knowledge and capabilities to control a planet (and the Universe???). The initial pace, based on changes to genetic heredity, is geologically slow. The addition of the capacity of living cognition for cultural heredity, changes the pace of significant change from millions of years, to millennia. Externalization of cultural knowledge to writing and printing increases the pace to centuries and decades. Networking virtual cultural knowledge at light speed via the internet, increases the pace to years or even months. In my lifetime I have seen the first generation digital computers evolve into the Global Brain.

As long as the requisites for live are available, competition for limiting resources inevitably leads to increasing complexity. Through most of the history of life, a species/individuals’ knowledge was embodied in its dynamic structure (e.g., of the nervous system) and genetic heritage that controls the development and regulation of structure. Some vertebrates evolved sufficient neural complexity to support the development of culture and cultural heredity. A few lineages, such as corvids (crows and their relatives), and two largely arboreal primate lineages (African apes and South American capuchin monkeys) independently evolved cultures able to transmit the knowledge to make and use increasingly complex tools from one generation to the next. Hominins, a lineage of tool-using apes forced by climate change around 4-5 million years ago to learn how to survive by extractive foraging and hunting on grassy savannas developed increasingly complex and sophisticated tool-kits for hunting and gathering, such that by around 2.5 million years ago our ancestors replaced most species of what was originally a substantial ecological guild of large carnivores.

Tools extend the physical and cognitive capabilities of the tool-users. In an ecological sense, hominin groups are defined by their shared survival knowledge, and inevitably compete to control limiting resources. Competition among groups led to the slow development of increasingly better stone and organic tools, and a genetically-based cognitive capacity to make and use tools. Homo heidelbergensis, that split into African (H. sapiens), European (Neanderthals), and Asian (Denisovans) some 200,000 years ago evolved complex linguistic capabilities that greatly increased the bandwidth for transmitting cultural knowledge. Some 70,000 years ago H. sapiens (“humans”) exited Africa to spread throughout Eurasia and quickly replace all other surviving hominin lineages. By ~ 50,000 years ago humans were making complex tools like bows and arrows, which put a premium on the capacity to remember the rapidly increasing volume of survival knowledge. At some point before the end of the last Ice Age, mnemonic tools were developed (“method of loci”, “songlines”) to extend the capacity of living memory by at least one order of magnitude and some 10,000 years ago as agriculture became practical in the “Fertile Crescent” monumental theaters of the mind (such as Göbekli Tepe and Stonehenge) and specialized knowledge management guilds such as the Masons provided the cultural capacity to enable the Agricultural Revolution. 7-4,000 years ago technologies for writing and the use of books and libraries enabled storing and sharing of cultural knowledge in material form external, facilitating the emergence of empires and nation-states.
Around 550 years ago printing enabled the mass production of books and widespread dissemination of bodies of knowledge to fuel the Reformation, Scientific and Industrial revolutions. Around 60 years ago the invention of the digital computer increasingly externalized cognitive processes and controls over other kinds of tools. Databases, word processing and the internet developed over the last ~30 years enabled knowledge to be created in the virtual world and then shared globally at light speed. Personal technologies developed in the last 10 years (e.g., smartphones) are allowing the emergence of post-human cyborgs. Moore’s Law of exponential growth suggests the capacity for a few orders of magnitude more before we reach the outer limits of quantum computing.

What happens next is anyone’s guess.

Slides available here:

 

 

The Shaky Foundations of Science: An Overview of the Big Issues – James Fodor

James Fodor 2013Many people think about science in a fairly simplistic way: collect evidence, formulate a theory, test the theory. By this method, it is claimed, science can achieve objective, rational knowledge about the workings of reality. In this presentation I will question the validity of this understanding of science. I will consider some of the key controversies in philosophy of science, including the problem of induction, the theory-ladenness of observation, the nature of scientific explanation, theory choice, and scientific realism, giving an overview of some of the main questions and arguments from major thinkers like Popper, Quine, Kuhn, Hempel, and Feyerabend. I will argue that philosophy of science paints a much richer and messier picture of the relationship between science and truth than many people commonly imagine, and that a familiarity with the key issues in the philosophy of science is vital for a proper understanding of the power and limits of scientific thinking.

Slides to the presentation available here:

Ashley Barnett

Abstract: Skepticism and the Psychology of Magic – Ashley Barnett

Ashley BarnettOur brain’s simulation of the external world, our conscious experience, is often wrong. Optical illusions demonstrate how our perception of objects can be mistaken. Analogously, magic tricks are cognitive illusions that vividly illustrate how our perception and understanding of events can go awry.  Thanks to recent work by neuroscientists and psychologists we know under what circumstances magic tricks are effective and how we can get better at working out how they are done.  The psychological principles at work are general ones, so understanding them can help us be appropriately skeptical of our observations and to reduce error.

 

 

Bio

Ashley Barnett is a philosophy PhD candidate at the University of Melbourne. He teaches critical thinking and researchers how people can improve their critical thinking skills. Most recently he worked on an experimental course for IARPA, the main research body of the US intelligence community. His online course is available at www.improvingreasoning.com .  He also performs as a stage magician – see www.yourmindonmagic.com.

Abstract – Science v Pseudoscience: What’s the Difference? – Kevin Korb

Science has a certain common core, especially a reliance on empirical methods of assessing hypotheses. Pseudosciences have little in common but their negation: they are not science. They reject meaningful empirical assessment in some way or another. Popper proposed a clear demarcation criterion for Science v Rubbish: Falsifiability. However, his criterion has not stood the test of time. There are no definitive arguments
against any pseudoscience, any more than against extreme skepticism in general, but there are clear indicators of phoniness.

Slides can be found here:

 

Kevin KorbMy research is in: machine learning, artificial intelligence, philosophy of science, scientific method, Bayesian inference and reasoning, Bayesian networks, artificial life, computer simulation, epistemology, evaluation theory.

See http://www.csse.monash.edu.au/~korb/ The page is out of date, but accurate as far as it goes.

http://theconversation.com/is-passing-a-turing-test-a-true-measure-of-artificial-intelligence-27801

 

http://theconversation.com/profiles/kevin-korb-115721